Topics in Catalysis

, Volume 61, Issue 12–13, pp 1300–1312 | Cite as

Novel Pt Electrocatalysts: Multifunctional Composite Supports for Enhanced Corrosion Resistance and Improved CO Tolerance

  • Á. Vass
  • I. BorbáthEmail author
  • I. Bakos
  • Z. Pászti
  • I. E. Sajó
  • A. Tompos
Original Paper


The electrochemical peculiarities of novel 20 wt% Pt electrocatalysts supported on Ti0.6Mo0.4O2–C composite materials in low-potential CO oxidation reaction (LPCOR) were investigated. The oxidation of CO on the Mo-containing Pt-based catalyst commences at exceptionally low potential values (ca. 100 mV). The results suggest that only CO adsorbed on specific Pt sites, where Pt and Mo atoms are in atomic closeness, can be oxidised below 400 mV potential. When the weakly bounded CO is oxidized, some hydrogen adsorption can take place on the released surface, although this amount is much smaller than in the case of a CO-free Pt surface. The Pt/Ti0.6Mo0.4O2–C catalyst loses its activity in LPCOR when Mo becomes oxidized (above ca. 400 mV). Accordingly, presence of Mo species in lower oxidation state than 6+ is supposed to have crucial role in CO oxidation. Nevertheless, re-reduction of oxidized Mo species formed above 400 mV is strongly hindered when adsorbed CO species are still present. Note that COads species can be completely removed only above 550 mV. Oxidized Mo species can be re-reduced and the activity in the LPCOR can be restored if the platinum surface is CO-free. Clear correlation between the so-called “pre-peak”, the molybdenum redox phenomenon and the CO tolerance of the 20 wt% Pt/Ti0.6Mo0.4O2–C system was established. Better performance of the Pt/Ti0.6Mo0.4O2–C electrocatalyst compared to commercially available reference Pt/C and state-of-art CO-tolerant PtRu/C (Quintech) catalysts was also demonstrated.


Conducting Ti-based mixed oxides TiMoOx Composite materials Pt electrocatalysts CO-tolerance 



The research within project No. VEKOP-2.3.2-16-2017-00013 was supported by the European Union and the State of Hungary, co-financed by the European Regional Development Fund. Financial support by the OTKA-project [Grant Number K112034 (István Bakos)] is greatly acknowledged.


  1. 1.
    Meier JC, Galeano C, Katsounaros I, Topalov AA, Kostka A, Schuüth F, Mayrhofer KJJ (2012) Degradation mechanisms of Pt/C fuel cell catalysts under simulated start-stop conditions. ACS Catal 2(5):832–843CrossRefGoogle Scholar
  2. 2.
    Huang SY, Ganesan P, Popov BN (2009) Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. J Am Chem Soc 131:13898–13899CrossRefPubMedGoogle Scholar
  3. 3.
    Lv Q, Yin M, Zhao X, Li C, Liu C, Xing W (2012) Promotion effect of TiO2 on catalytic activity and stability of Pt catalyst for electrooxidation of methanol. J Power Sources 218:93–99CrossRefGoogle Scholar
  4. 4.
    Huang J, Zang J, Zhao Y, Dong L, Wang Y (2014) One-step synthesis of nanocrystalline TiO2-coated carbon nanotube support for Pt electrocatalyst in direct methanol fuel cell. Mater Lett 137:335–338CrossRefGoogle Scholar
  5. 5.
    Vogel W, Timperman L, Alonso-Vante N (2010) Probing metal substrate interaction of Pt nanoparticles: structural XRD analysis and oxygen reduction reaction. Appl Catal A 377:167–173CrossRefGoogle Scholar
  6. 6.
    Liu X, Chen J, Liu G, Zhang L, Zhang H, Yi B (2010) Enhanced long-term durability of proton exchange membrane fuel cell cathode by employing Pt/TiO2/C catalysts. J Power Sources 195:4098–4103CrossRefGoogle Scholar
  7. 7.
    von Kraemer S, Wikander K, Lindbergh G, Lundblad A, Palmqvist AEC (2008) Evaluation of TiO2 as catalyst support in Pt-TiO2/C composite cathodes for the proton exchange membrane fuel cell. J Power Sources 180:185–190CrossRefGoogle Scholar
  8. 8.
    Bauer A, Song C, Ignaszak A, Hui R, Zhang J, Chevallier L, Jones D, Roziére J (2010) Improved stability of mesoporous carbon fuel cell catalyst support through incorporation of TiO2. Electrochim Acta 55:8365–8370CrossRefGoogle Scholar
  9. 9.
    Wang D, Subban CV, Wang H, Rus E, DiSalvo FJ, Abruña HD (2010) Highly stable and CO-Tolerant Pt/Ti0.7W0.3O2 electrocatalyst for proton-exchange membrane fuel cells. J Am Chem Soc 132:10218–10220CrossRefPubMedGoogle Scholar
  10. 10.
    Park KW, Seol KS (2007) Nb-TiO2 supported Pt cathode catalyst for polymer electrolyte membrane fuel cells. Electrochem Commun 9:2256–2260CrossRefGoogle Scholar
  11. 11.
    Huang SY, Ganesan P, Popov BN (2010) Electrocatalytic activity and stability of niobium-doped titanium oxide supported platinum catalyst for polymer electrolyte membrane fuel cells. Appl Catal B 96:224–231CrossRefGoogle Scholar
  12. 12.
    Kumar A, Ramani V (2013) Ta0.3Ti0.7O2 electrocatalyst supports exhibit exceptional electrochemical stability. J Electrochem Soc 160:F1207-F1215CrossRefGoogle Scholar
  13. 13.
    Subban CV, Zhou Q, Hu A, Moylan TE, Wagner FT, DiSalvo FJ (2010) Sol-gel synthesis, electrochemical characterization, and stability testing of Ti0.7W0.3O2 nanoparticles for catalyst support applications in proton-exchange membrane fuel cells. J Am Chem Soc 132:17531–17536CrossRefPubMedGoogle Scholar
  14. 14.
    Pereira LGS, dos Santos FR, Pereira ME, Paganin VA, Ticianelli EA (2006) CO tolerance effects of tungsten-based PEMFC anodes. Electrochim Acta 51:4061–4066CrossRefGoogle Scholar
  15. 15.
    Maillard F, Peyrelade E, Soldo-Olivier Y, Chatenet M, Chaînet E, Faure R (2007) Is carbon-supported Pt-WOx composite a CO-tolerant material?. Electrochim Acta 52:1958–1967CrossRefGoogle Scholar
  16. 16.
    Ioroi T, Fujiwara N, Siroma Z, Yasuda K, Miyazaki Y (2002) Platinum and molybdenum oxide deposited carbon electrocatalyst for oxidation of hydrogen containing carbon monoxide. Electrochem Commun 4:442–446CrossRefGoogle Scholar
  17. 17.
    Santiago EI, Batista MS, Assaf EM, Ticianelli EA (2004) Mechanism of CO tolerance on molybdenum-based electrocatalysts for PEMFC. J Electrochem Soc 151(7):A944–A949CrossRefGoogle Scholar
  18. 18.
    Santiago EI, Camara GA, Ticianelli EA (2003) CO tolerance on PtMo/C electrocatalysts prepared by the formic acid method. Electrochim Acta 48:3527–3534CrossRefGoogle Scholar
  19. 19.
    Elezović NR, Gajić-Krstajić LjM, Vračar LjM, Krstajić NV (2010) Effect of chemisorbed CO on MoOx-Pt/C electrode on the kinetics of hydrogen oxidation reaction. Int J Hydrogen Energy 35:12878–12887CrossRefGoogle Scholar
  20. 20.
    Mayrhofer KJJ, Hartl K, Juhart V, Arenz M (2009) Degradation of carbon-supported Pt bimetallic nanoparticles by surface segregation. J Am Chem Soc 131:16348–16349CrossRefPubMedGoogle Scholar
  21. 21.
    Aguiar ACR, Olivi P (2010) Characterization and voltammetric behavior of PtyMozOx/C electrodes prepared by the thermal decomposition of polymeric precursors. J Power Sources 195:3485–3489CrossRefGoogle Scholar
  22. 22.
    Lebedeva NP, Janssen GJM (2005) On the preparation and stability of bimetallic PtMo/C anodes for proton-exchange membrane fuel cells. Electrochim Acta 51:29–40CrossRefGoogle Scholar
  23. 23.
    Dos Anjos DM, Kokoh KB, Léger JM, De Andrade AR, Olivi P, Tremiliosi-Filho G (2006) Electrocatalytic oxidation of ethanol on Pt-Mo bimetallic electrodes in acid medium. J Appl Electrochem 36:1391–1397CrossRefGoogle Scholar
  24. 24.
    Mukerjee S, Urian RC (2002) Bifunctionality in Pt alloy nanocluster electrocatalysts for enhanced methanol oxidation and CO tolerance in PEM fuel cells: electrochemical and in situ synchrotron spectroscopy. Electrochim Acta 47:3219–3231CrossRefGoogle Scholar
  25. 25.
    Papakonstantinou G, Paloukis F, Siokou A, Neophytides SG (2007) The electrokinetics of CO oxidation on Pt4Mo(20 wt%)/C interfaced with Nafion membrane. J Electrochem Soc 154(10):B989–B997CrossRefGoogle Scholar
  26. 26.
    Grgur BN, Markovic NM, Ross PN (1999) The electro-oxidation of H2 and H2/CO mixtures on carbon-supported PtxMoy alloy catalysts. J Electrochem Soc 146:1613–1619CrossRefGoogle Scholar
  27. 27.
    Hu JE, Liu Z, Eichhorn BW, Jackson GS (2012) CO tolerance of nano-architectured Pt-Mo anode electrocatalysts for PEM fuel cells. Int J Hydrogen Energy 37:11268–11275CrossRefGoogle Scholar
  28. 28.
    Liu Z, Hu JE, Wang Q, Gaskell K, Frenkel AI, Jackson GS, Eichhorn B (2009) PtMo alloy and MoOx@Pt core-shell nanoparticles as highly CO-tolerant electrocatalysts. J Am Chem Soc 131:6924–6925CrossRefPubMedGoogle Scholar
  29. 29.
    Yan Z, Xie J, Jing J, Zhang M, Wei W, Yin S (2012) MoO2 nanocrystals down to 5 nm as Pt electrocatalyst promoter for stable oxygen reduction reaction. Int J Hydrogen Energy 37:15948–15955CrossRefGoogle Scholar
  30. 30.
    Martins PFBD., Ticianelli EA (2015) Electrocatalytic activity and stability of platinum nanoparticles supported on carbon-molybdenum oxides for the oxygen reduction reaction. ChemElectroChem 2(9):1298–1306CrossRefGoogle Scholar
  31. 31.
    Ho VTT, Pan CJ, Rick J, Su WN, Hwang BJ (2011) Nanostructured Ti0.7Mo0.3O2 support enhances electron transfer to Pt: high-performance catalyst for oxygen reduction reaction. J Am Chem Soc 133:11716–11724CrossRefPubMedGoogle Scholar
  32. 32.
    Nguyen TT, Ho VTT, Pan CJ, Liu JY, Chou HL, Rick J, Su WH, Hwang BJ (2014) Synthesis of Ti0.7Mo0.3O2 supported-Pt nanodendrites and their catalytic activity and stability for oxygen reduction reaction. Appl Catal B 154–155:183–189CrossRefGoogle Scholar
  33. 33.
    Esfahani RAM, Vankova SK, Monteverde Videla AHA, Specchia S (2017) Innovative carbon-free low content Pt catalyst supported on Mo-doped titanium suboxide (Ti3O5-Mo) for stable and durable oxygen reduction reaction. Appl Catal B 201:419–429CrossRefGoogle Scholar
  34. 34.
    Justin P, Rao GR (2011) Methanol oxidation on MoO3 promoted Pt/C electrocatalyst. Int J Hydrogen Energy 36:5875–5884CrossRefGoogle Scholar
  35. 35.
    Wang Y, Fachini ER, Cruz G, Zhu Y, Ishikawa Y, Colucci JA, Cabrera CR (2001) Effect of surface composition of electrochemically codeposited platinum/molybdenum oxide on methanol oxidation. J Electrochem Soc 148:C222-C226Google Scholar
  36. 36.
    Ordóñez LC, Roquero P, Ramírez J, Sebastian PJ (2016) Methanol electro-oxidation on bimetallic PtMo/C catalysts and Pt/C-Mo/C mechanical mixtures. Int J Electrochem Sci 11:5364–5379CrossRefGoogle Scholar
  37. 37.
    Gubán D, Borbáth I, Pászti Z, Sajó IE, Drotár E, Hegedűs M, Tompos A (2015) Preparation and characterization of novel Ti0.7W0.3O2-C composite materials for Pt-based anode electrocatalysts with enhanced CO tolerance. Appl Catal B 174:455–470CrossRefGoogle Scholar
  38. 38.
    Gubán D, Pászti Z, Borbáth I, Bakos I, Drotár E, Sajó IE, Tompos A (2016) Design and preparation of CO tolerant anode electrocatalysts for PEM fuel cells. Periodica Polytech Chem 60(1):29–39CrossRefGoogle Scholar
  39. 39.
    Borbáth I, Pászti Z, Gubán D, Vass Á, Tompos A (2015) CO-toleráns anódoldali elektrokatalizátor fejlesztése PEM tüzelőanyag-cellákhoz. Magyar Kémiai Folyóirat 121:80–88Google Scholar
  40. 40.
    Gubán D, Tompos A, Bakos I, Vass Á, Pászti Z, Szabó EG, Sajó IE, Borbáth I (2017) Preparation of CO-tolerant anode electrocatalysts for polymer electrolyte membrane fuel cells. Int J Hydrogen Energy 42:13741–13753CrossRefGoogle Scholar
  41. 41.
    Vass Á, Borbáth I, Pászti Z, Bakos I, Sajó IE, Németh P, Tompos A (2017) Effect of Mo incorporation on electrocatalytic performance of Ti-Mo mixed oxide-carbon composite supported Pt electrocatalysts. React Kinet Mech Catal 121:141–160CrossRefGoogle Scholar
  42. 42.
    Fairley N (2006) CasaXPS: Spectrum Processing Software for XPS, AES and SIMS, Version 2.3.13. Casa Software Ltd, Cheshire,
  43. 43.
    Micoud F, Maillard F, Gourgaud A, Chatenet M (2009) Unique CO-tolerance of Pt-WOx materials. Electrochem Commun 11:651–654CrossRefGoogle Scholar
  44. 44.
    Guillén-Villafuerte O, García G, Rodríguez JL, Pastor E, Guil-López R, Nieto E, Fierro JLG (2013) Preliminary studies of the electrochemical performance of Pt/X@MoO3/C (X = Mo2C, MoO2, Mo0) catalysts for the anode of a DMFC: influence of the Pt loading and Mo-phase. Int J Hydrogen Energy 38:7811–7821CrossRefGoogle Scholar
  45. 45.
    Tsiouvaras N, Martínez-Huerta MV, Paschos O, Stimming U, Fierro JLG, Peña MA (2010) PtRuMo/C catalysts for direct methanol fuel cells: effect of the pretreatment on the structural characteristics and methanol electrooxidation. Int J Hydrogen Energy 35:11478–11488CrossRefGoogle Scholar
  46. 46.
    Samjeske G, Wang H, Löffler T, Baltruschat H (2002) CO and methanol oxidation at Pt-electrodes modified by Mo. Electrochim Acta 47:3681–3692CrossRefGoogle Scholar
  47. 47.
    Mukerjee S, Lee SJ, Ticianelli EA, McBreen J, Grgur BN, Markovic NM, Ross PN, Giallombardo JR, De Castro ES (1999) Investigation of enhanced CO tolerance in proton exchange membrane fuel cells by carbon supported PtMo alloy catalyst. Electrochem Solid State Lett 2(1):12–15CrossRefGoogle Scholar
  48. 48.
    Pereira LGS, Paganin VA, Ticianelli EA (2009) Investigation of the CO tolerance mechanism at several Pt-based bimetallic anode electrocatalysts in a PEM fuel cell. Electrochim Acta 54:1992–1998CrossRefGoogle Scholar
  49. 49.
    Hou Z, Yi B, Yu H, Lin Z, Zhang H (2003) CO tolerance electrocatalyst of PtRu-HxMeO3/C (Me = W, Mo) made by composite support method. J Power Sources 123:116–125CrossRefGoogle Scholar
  50. 50.
    Song C, Khanfar M, Pickup PG (2006) Mo oxide modified catalysts for direct methanol, formaldehyde and formic acid fuel cells. J Appl Electrochem 36:339–345CrossRefGoogle Scholar
  51. 51.
    Alcaide F, Álvarez G, Tsiouvaras N, Pena MA, Fierro JLG, Martínez-Huerta MV (2011) Electrooxidation of H2/CO on carbon-supported PtRu-MoOx nanoparticles for polymer electrolyte fuel cells. Int J Hydrogen Energy 36:14590–14598CrossRefGoogle Scholar
  52. 52.
    Micoud F, Maillard F, Bonnefont A, Job N, Chatenet M (2010) The role of the support in COads monolayer electrooxidation on Pt nanoparticles: Pt/WOx vs. Pt/C. Phys Chem Chem Phys 12:1182–1193CrossRefPubMedGoogle Scholar
  53. 53.
    Zhang H, Wang Y, Fachini ER, Cabrera CR (1999) Electrochemically codeposited platinum/molybdenum oxide electrode for catalytic oxidation of methanol in acid solution. Electrochem Solid State Lett 2(9):437–439CrossRefGoogle Scholar
  54. 54.
    Guillén-Villafuerte O, Guil-López R, Nieto E, García G, Rodríguez JL, Pastor E, Fierro JLG (2012) Electrocatalytic performance of different Mo-phases obtained during the preparation of innovative Pt-MoC catalysts for DMFC anode. Int J Hydrogen Energy 37:7171–7179CrossRefGoogle Scholar
  55. 55.
    Baltrusaitis J, Mendoza-Sanchez B, Fernandez V, Veenstra R, Dukstiene N, Roberts A, Fairley N (2015) Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model. Appl Surf Sci 326:151–161CrossRefGoogle Scholar
  56. 56.
    Schroeder T, Zegenhagen J, Magg N, Immaraporn B, Freund HJ (2004) Formation of a faceted MoO2 epilayer on Mo(112) studied by XPS, UPS and STM. Surf Sci 552:85–97CrossRefGoogle Scholar
  57. 57.
    Scanlon DO, Watson GW, Payne DJ, Atkinson GR, Egdell RG, Law DSL (2010) Theoretical and experimental study of the electronic structures of MoO3 and MoO2. J Phys Chem C 114:4636–4645CrossRefGoogle Scholar
  58. 58.
    Zhu Y, Uchida H, Watanabe M (1999) Oxidation of carbon monoxide at a platinum film electrode studied by fourier transform infrared spectroscopy with attenuated total reflection technique. Langmuir 15:8757–8764CrossRefGoogle Scholar
  59. 59.
    Igarashi H, Fujino T, Zhu Y, Uchida H, Watanabe M (2001) CO tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism. Phys Chem Chem Phys 3:306–314CrossRefGoogle Scholar
  60. 60.
    Uchida H, Ozuka H, Watanabe M (2002) Electrochemical quartz crystal microbalance analysis of CO-tolerance at Pt-Fe alloy electrodes. Electrochim Acta 47:3629–3636CrossRefGoogle Scholar
  61. 61.
    Kanezashi I, Nohara S, Omura J, Watanabe M, Uchida H (2011) Electrochemical quartz crystal microbalance analysis of the CO oxidation reaction at Pt alloy electrodes. J Electroanal Chem 662:123–129CrossRefGoogle Scholar
  62. 62.
    Anderson AB, Neshev NM (2002) Mechanism for the electro-oxidation of carbon monoxide on platinum, including electrode potential dependence. J Electrochem Soc 149:E383-E388Google Scholar
  63. 63.
    Watanabe M, Zhu Y, Uchida H (2000) Oxidation of CO on a Pt-Fe alloy electrode studied by surface enhanced infrared reflection-absorption spectroscopy. J Phys Chem B 104:1762–1768CrossRefGoogle Scholar
  64. 64.
    Beden B, Lamy C, De Tacconi NR, Arvia AJ (1990) The electrooxidation of CO: a test reaction in electrocatalysis. Electrochim Acta 35:691–704CrossRefGoogle Scholar
  65. 65.
    Lu J, Li WS, Du JH, Fu JM (2005) Co-deposition of Pt-HxMoO3 and its catalysis on methanol oxidation in sulfuric acid solution. J New Mat Electrochem Syst 8:5–14Google Scholar
  66. 66.
    Saji VS, Lee CW (2012) Molybdenum, molybdenum oxides, and their electrochemistry. ChemSusChem 5(7):1146–1161CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Á. Vass
    • 1
  • I. Borbáth
    • 1
    Email author
  • I. Bakos
    • 1
  • Z. Pászti
    • 1
  • I. E. Sajó
    • 2
  • A. Tompos
    • 1
  1. 1.Institute of Materials and Environmental Chemistry, Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
  2. 2.Szentágothai Research CentreUniversity of PécsPécsHungary

Personalised recommendations