Topics in Catalysis

, Volume 61, Issue 12–13, pp 1375–1382 | Cite as

Titanium Tetraisopropoxide Adsorption and Decomposition on Cu(111)

  • M. N. PetukhovEmail author
  • P. Birnal
  • S. Bourgeois
  • D. Vantalon
  • P. Lagarde
  • B. Domenichini
Original Paper


Titanium tetraisopropoxide (TTIP) molecules have been deposited on the copper substrate Cu(111) with monolayer coverage at cryogenic, room and elevated temperatures and studied by variable temperature scanning tunneling microscope (STM), X-ray photoelectron spectroscopy (XPS), low electron energy diffraction (LEED) and X-ray absorption near edge structure (XANES) spectroscopy using the synchrotron radiation. Adsorption and irregular assembling of entire molecules are observed at low temperatures. At room temperature, STM reveals an agglomeration of TTIP molecular fragments. The XPS analysis confirms presence of ligand groups bonded to molecular center, indicating a partial decomposition process up to 670 K. TTIP molecules start to decompose completely on copper surface at elevated temperatures, higher than 800 K. Hexagonal surface oxide structure is formed after TTIP monolayer thermal decomposition at 870 K, as it is proved by LEED and STM.


Titanium tetraisopropoxide Surface decomposition Copper X-ray absorption near edge structure X-ray photoelectron spectroscopy Scanning tunneling microscopy 


  1. 1.
    Fictorie CP, Evans JF, Gladfelter WL (1994) Kinetic and mechanistic study of the chemical vapor deposition of titanium dioxide thin films using tetrakis-(isopropoxo)-titanium(IV). J Vac Sci Technol A 12:1108–1113CrossRefGoogle Scholar
  2. 2.
    Reinke M, Kuzminykh Y, Hoffmann P (2015) Surface kinetics of titanium isopropoxide in high vacuum chemical vapor deposition. J Phys Chem C 119:27965–27971CrossRefGoogle Scholar
  3. 3.
    Nizard H, Kosinova ML, Fainer NI, Rumyantsev YuM, Ayupov BM, Shubin YuV (2008) Deposition of titanium dioxide from TTIP by plasma enhanced and remote plasma enhanced chemical vapor deposition. Surf Coat Technol 202:4076–4085CrossRefGoogle Scholar
  4. 4.
    Barlaz DE, Seebauer EG (2015) Manipulation of carrier concentration, crystallite size and density in polycrystalline anatase TiO2 via amorphous-phase medium range atomic order. CrystEngComm 17:2101–2109CrossRefGoogle Scholar
  5. 5.
    Taylor CJ, Gilmer DC, Colombo DG, Wilk GD, Campbell SA, Roberts J, Gladfelter WL (1999) Does chemistry really matter in the chemical vapor deposition of titanium dioxide? Precursor and kinetic effects on the microstructure of polycrystalline films. J Am Chem Soc 121:5220–5229CrossRefGoogle Scholar
  6. 6.
    Cho S-I, Chung C-H, Moon SH (2001) Temperature-programmed desorption study on the decomposition mechanism of Ti(OC3H7)4 on Si(100). J Electrochem Soc 148:C599–C603CrossRefGoogle Scholar
  7. 7.
    Cho S-I, Chung C-H, Moon SH (2002) Surface decomposition mechanism of Ti(OC3H7)4 on a platinum surface. Thin Solid Films 409:98–104CrossRefGoogle Scholar
  8. 8.
    Cho S-I, Moon SH, Chung C-H (2001) Fundamental studies on the decomposition mechanism of Ti(OC3H7)4 and TiO2 film evolution on Si(100) and Pt(100) surfaces. J Phys IV 11:Pr3-517–Pr3-524Google Scholar
  9. 9.
    Ragazzon D, Schaefer A, Farstad MH, Walle LE, Palmgren P, Borg A, Uvdal P, Sandell A (2013) Chemical vapor deposition of ordered TiOx nanostructures on Au(111). Surf Sci 617:211–217CrossRefGoogle Scholar
  10. 10.
    Farstad MH, Ragazzon D, Grönbeck H, Strømsheim MD, Stavrakas C, Gustafson J, Sandell A, Borg A (2016) TiOx thin films grown on Pd(100) and Pd(111) by chemical vapor deposition. Surf Sci 649:80–89CrossRefGoogle Scholar
  11. 11.
    Siefering KL, Griffin GL (1990) Kinetics of low-pressure chemical vapor deposition of TiO2 from titanium tetraisopropoxide. J Electrochem Soc 137:814–818CrossRefGoogle Scholar
  12. 12.
    Wu YM, Nix RM (1994) Growth of TiOx overlayers by chemical vapour deposition on a single-crystal copper substrate. J Mater Chem 4(9):1403–1407CrossRefGoogle Scholar
  13. 13.
    Antony MT, Seah MP (1984) Energy calibration of electron spectrometers. Surf Interface Anal 14:107–115CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Kanai H, Kobayashi H (1993) X-ray absorption study on the local structures of highly dispersed supported titanium oxides prepared by a CVD method. Catal Lett 20:125–131CrossRefGoogle Scholar
  16. 16.
    Babonneau F, Doeuff S, Leaustic A, Sanchez C, Cartier C, Verdaguer M (1988) XANES and EXAFS study of titanium alkoxides. Inorg Chem 27:3166–3172CrossRefGoogle Scholar
  17. 17.
    Farges F, Brown GE, Rehr JJ (1996) Coordination chemistry of Ti (IV) in silicate glasses and melts: I. XAFS study of titanium coordination in oxide model compounds. Geochim Cosmochim Acta 60:3023–3038CrossRefGoogle Scholar
  18. 18.
    Bardi U (1990) On the composition and structure of thin layers of titanium oxide on platinum surfaces. Catal Lett 5:81–88CrossRefGoogle Scholar
  19. 19.
    Sedona F, Rizzi G-A, Agnoli S, Llabrés i Xamena FX, Papageorgiou A, Ostermann D, Sambi M, Finetti P, Schierbaum K, Granozzi G (2005) Ultrathin TiOx films on Pt(111): a LEED, XPS, and STM investigation. J Phys Chem B 109:24411–24426CrossRefPubMedGoogle Scholar
  20. 20.
    Chastain J, King RC (eds) (1995) Handbook of X-ray photoelectron spectroscopy. ULVAC-PHI Inc., ChigasakiGoogle Scholar
  21. 21.
    Espinós JP, Fernádez A, González-Elipe AR (1993) Oxidation and diffusion processes in nickel-titanium oxide systems. Surf Sci 295:402–410CrossRefGoogle Scholar
  22. 22.
    Farstad MH, Ragazzon D, Walle LE, Schaefer A, Sandell A, Borg A (2015) Water adsorption on TiOx thin films grown on Au(111). J Phys Chem C 119:6660–6669CrossRefGoogle Scholar
  23. 23.
    Atrei A, Bardi U, Rovida G (1997) Structure and composition of the titanium oxide layers formed by low-pressure oxidation of the Ni94Ti6 (110) surface. Surf Sci 391:216–225CrossRefGoogle Scholar
  24. 24.
    Barcaro G, Agnoli S, Sedona F, Rizzi G-A, Fortunelli A, Granozzi G (2009) Structure of reduced ultrathin TiOx polar films on Pt(111). J Phys Chem C 113:5721–5729CrossRefGoogle Scholar
  25. 25.
    Buerger P, Nurkowski D, Akroyd J, Mosbach S, Kraft M (2015) First-principles thermochemistry for the thermal decomposition of titanium tetraisopropoxide. J Phys Chem A 119:8376–8387CrossRefPubMedGoogle Scholar
  26. 26.
    Sinha A, Hess DW, Henderson CL (2006) Area selective atomic layer deposition of titanium dioxide: effect of precursor chemistry. J Vac Sci Technol B 24:2523–2532CrossRefGoogle Scholar
  27. 27.
    Wu C, Marshall MSJ, Castell MR (2011) Surface structures of ultrathin TiOx films on Au(111). J Phys Chem C 115:8643–8652CrossRefGoogle Scholar
  28. 28.
    Papageorgiou AC, Cabailh G, Chen Q, Resta A, Lundgren E, Andersen JN, Thornton G (2007) Growth and reactivity of titanium oxide ultrathin films on Ni(110). J Phys Chem C 111:7704–7710CrossRefGoogle Scholar
  29. 29.
    Maeda T, Kobayashi Y, Kishi K (1999) Growth of ultra-thin titanium oxide on Cu(100), Fe/Cu(100) and ordered ultra-thin iron oxide studied by low-energy electron diffraction and X-ray photoelectron spectroscopy. Surf Sci 436:249–258CrossRefGoogle Scholar
  30. 30.
    Atrei A, Ferrari AM, Finetti P, Beni A, Rovida G (2009) LEED and DFT study of the quasihexagonal TiO2 structure on Cu(001). J Phys Chem C 113:19578–19584CrossRefGoogle Scholar
  31. 31.
    Finetti P, Caffio M, Cortigiani B, Atrei A, Rovida G (2008) Mechanism of growth and structure of titanium oxide ultrathin films deposited on Cu(001). Surf Sci 602:1101–1113CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. N. Petukhov
    • 1
    Email author
  • P. Birnal
    • 1
  • S. Bourgeois
    • 1
  • D. Vantalon
    • 2
  • P. Lagarde
    • 2
  • B. Domenichini
    • 1
  1. 1.ICB, UMR 6303 CNRS-Université de Bourgogne Franche-ComtéDijonFrance
  2. 2.Synchrotron SOLEIL, L’Orme des MerisiersGif-sur-YvetteFrance

Personalised recommendations