Topics in Catalysis

, Volume 61, Issue 12–13, pp 1313–1322 | Cite as

Oxygen Assisted Morphological Changes of Pt Nanosized Crystals

  • Sylwia OwczarekEmail author
  • Sten V. Lambeets
  • Cédric BarrooEmail author
  • Robert Bryl
  • Leszek Markowski
  • Thierry Visart de BocarméEmail author
Original Paper


Thermal faceting of clean and oxygen-covered Pt nanocrystals was investigated at the nanoscale by means of field ion microscopy (FIM) and field emission microscopy (FEM) in the 500–700 K temperature range. FIM and FEM are used to study the morphology of the crystal prepared in the form of a sharp tip. The tip extremity is observed with nanoscale lateral resolution and corresponds to a suitable model of a single nanoparticle of a real catalyst. By contrast to similar studies on iridium, palladium and rhodium, small oxygen exposures (~ 10 L) and annealing treatments at 700 K did not lead to strong surface modifications. The field ion micrograph was similar to the pattern obtained for the nanocrystals annealed under vacuum conditions, revealing only low index {001} and {111} facets. For higher oxygen doses, i.e. ≥ 100 L, and in field-free conditions, the flat {100}, {111} and {113} facets were developed after annealing the tip at 700 K, which was attributed to the formation of oxide layers. For comparison, the surface modification was studied under oxygen-rich conditions but in the presence of an electric field at 700 K. The results showed that only former reconstruction was observed regardless of oxygen doses. These results are also promising in the frame of engineering catalysts since different gas exposure may lead to the extension or shrinking of specific facets, which may impact the efficiency of the catalyst.


Platinum Nanocatalysis Model catalysis Surface reconstruction Field emission techniques Field ion microscopy 



S.O., C.B., R.B. and T.V.d.B. thank Wallonia-Brussels International for the Bilateral Cooperation Agreement, and the Bilateral Cooperation between the Fonds de la Recherche Scientifique (F.R.S.-FNRS) and the Polish Academy of Sciences (PAN). S.V.L. and C.B. thank the F.R.S.-FNRS for financial support (PhD grant from FRIA and Postdoctoral fellowship from FNRS, respectively). This work was supported by a research grant from University of Wroclaw (No. 1425/M/FD/15).


  1. 1.
    King DA, Woodruff DP (1982) The chemical physics of solid surfaces and heterogeneous catalysis, vol 4. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Freund HJ (2002) Surf Sci 500:271–299CrossRefGoogle Scholar
  3. 3.
    Arblaster JW (2005) Platin Met Rev 49:141–149CrossRefGoogle Scholar
  4. 4.
    Seriani N, Jin Z, Pompe W, Colombi Ciacchi L (2007) Phys Rev B 76:155421CrossRefGoogle Scholar
  5. 5.
    Bernhardt TM, Heiz U, Landman U (2007) Nanocatalysis. Springer, BerlinGoogle Scholar
  6. 6.
    Croy JR, Mostafa S, Liu J, Sohn YH, Heinrich H, Roldan Cuenya B (2007) Catal Lett 191:209–216CrossRefGoogle Scholar
  7. 7.
    Mostafa S, Croy JR, Heinrich H, Roldan Cuenya B (2009) Appl Catal A 366:353–362CrossRefGoogle Scholar
  8. 8.
    Rinnemo M (1997) Surf Sci 376:297–309CrossRefGoogle Scholar
  9. 9.
    McCrea KR, Parker JS, Somorjai GA (2002) J Phys Chem B 106:10854–10863CrossRefGoogle Scholar
  10. 10.
    Engel T, Ertl G (1979) Adv Catal 28:1–78Google Scholar
  11. 11.
    Laidler KJ, Meiser JH (1982) Physical chemistry, Benjamin/Cummings Pub. Co., Menlo ParkGoogle Scholar
  12. 12.
    Sandert M, Imbihl R, Schuster R, Barth JV, Ertl G (1992) Surf Sci 271:159–169CrossRefGoogle Scholar
  13. 13.
    Parkinson CR, Walker M, McConville CF (2003) Surf Sci 545:19–33CrossRefGoogle Scholar
  14. 14.
    Miller DJ, Öberg H, Kaya S, Sanchez Casalongue H, Friebel D, Anniyev T, Ogasawara H, Bluhm H, Pettersson LGM, Nilsson A (2011) Phys Rev Lett 107:195502CrossRefPubMedGoogle Scholar
  15. 15.
    Devarajan SP, Hinojosa JA Jr, Weaver JF (2008) Surf Sci 602:3116–3124CrossRefGoogle Scholar
  16. 16.
    Ertl G, Neumann M, Streit KM (1977) Surf Sci 64:393–410CrossRefGoogle Scholar
  17. 17.
    Walker AV, Klötzer B, King DA (1998) J Chem Phys 109:6879–6888CrossRefGoogle Scholar
  18. 18.
    Freyer N, Kiskinova M, Pirug G, Bonze HP (1986) Surf Sci 166:206–220CrossRefGoogle Scholar
  19. 19.
    Helveg S, Li WX, Bartelt NC, Horch S, Lægsgaard E, Hammer B, Besenbacher F (2007) Phys Rev Lett 98:115501CrossRefPubMedGoogle Scholar
  20. 20.
    Li WX, Österlund L, Vestergaard EK, Vang RT, Matthiesen J, Pedersen TM, Lægsgaard E, Hammer B, Besenbacher F (2004) Phys Rev Lett 93:146104CrossRefPubMedGoogle Scholar
  21. 21.
    Somorjai GA, Aliaga C (2010) Langmuir 26:16190–16203CrossRefPubMedGoogle Scholar
  22. 22.
    Shao M, Peles A, Shoemaker K (2011) Nano Lett 11:3714–03719CrossRefPubMedGoogle Scholar
  23. 23.
    Tian N, Zhou ZY, Sun SG (2008) J Phys Chem C 112:19801–19817CrossRefGoogle Scholar
  24. 24.
    Somorjai GA, Park JY (2008) Chem Soc Rev 37:2155–2162CrossRefPubMedGoogle Scholar
  25. 25.
    Jin M, Zhang H, Xie Z, Xia Y (2012) Energy Environ Sci 5:6352–6357CrossRefGoogle Scholar
  26. 26.
    Zhang H, Jin M, Xia Y (2012) Angew Chem Int Ed 51:7656–7673CrossRefGoogle Scholar
  27. 27.
    Madey TE, Chen W, Wang H, Kaghazchi P, Jacob T (2008) Chem Soc Rev 37:2310–2327CrossRefPubMedGoogle Scholar
  28. 28.
    Yoshida H, Matsuura K, Kuwauchi Y, Kohno H, Shimada S, Haruta M, Takeda S (2011) Appl Phys Express 4:065001CrossRefGoogle Scholar
  29. 29.
    Medvedev KV, Suchorski Y, Voss C, Visart de Bocarmé T, Bär T, Kruse N (1998) Langmuir 14:6151–6157CrossRefGoogle Scholar
  30. 30.
    Dicke J, Rotermund HH, Lauterbach J (2000) Surf Sci 454–456:352–357CrossRefGoogle Scholar
  31. 31.
    Sadeghi P, Dunphy K, Punckt C, Rotermund HH (2012) J Phys Chem C 116:4686–4691CrossRefGoogle Scholar
  32. 32.
    Voss C, Kruse N (1995) Appl Surf Sci 87/88:134–139CrossRefGoogle Scholar
  33. 33.
    Barroo C, Gilis N, Lambeets SV, Devred F, Visart de Bocarmé T (2014) Appl Surf Sci 304:2–10CrossRefGoogle Scholar
  34. 34.
    Gorodetskii VV, Elokhina VI, Bakker JW, Nieuwenhuys BE (2005) Catal Today 105:183–205CrossRefGoogle Scholar
  35. 35.
    Genty E, Jacobs L, Visart de Bocarmé T, Barroo C (2017) Catalysts 7(5):134CrossRefGoogle Scholar
  36. 36.
    Bär T, Visart de Bocarmé T, Kruse N (2000) Surf Sci 454–456:240–245CrossRefGoogle Scholar
  37. 37.
    Bryl R, Olewicz T, Visart de Bocarmé T, Kruse N (2010) J Phys Chem C 114:2220–2226CrossRefGoogle Scholar
  38. 38.
    Bryl R, Olewicz T, Visart de Bocarmé T, Kruse N (2011) J Phys Chem C 115:2761–2768CrossRefGoogle Scholar
  39. 39.
    McEwen JS, Gaspard P, De Decker Y, Barroo C, Visart de Bocarmé T, Kruse N (2010) Langmuir 26:16381–16391CrossRefPubMedGoogle Scholar
  40. 40.
    Barroo C, De Decker Y, Visart de Bocarmé T, Kruse N (2014) J Phys Chem C 118:6839–6846CrossRefGoogle Scholar
  41. 41.
    Müller EW, Tsong TT (1969) Field ion microscopy: principles and applications. Elsevier, New YorkCrossRefGoogle Scholar
  42. 42.
    Bagot PAJ, Cerezo A, Smith GDW (2007) Surf Sci 601:2245–2255CrossRefGoogle Scholar
  43. 43.
    Visart de Bocarmé T, Kruse N (2001) Top Catal 14:35–42CrossRefGoogle Scholar
  44. 44.
    Chen Q, Richardson NV (2003) Prog Surf Sci 73:59–77CrossRefGoogle Scholar
  45. 45.
    Seriani N, Mittendorfer F (2008) J Phys Condens Matter 20:184023CrossRefGoogle Scholar
  46. 46.
    Voss C, Kruse N (1998) Surf Sci 409:252–257CrossRefGoogle Scholar
  47. 47.
    Kruse N, Gaussmann A (1993) Appl Surf Sci 67:160–165CrossRefGoogle Scholar
  48. 48.
    Yamanaka T, Xue QK, Kimura K, Matsushima T, Hasegawa Y, Sakura T (2000) Jpn J Appl Phys 39:3562–3565CrossRefGoogle Scholar
  49. 49.
    Jenkins SJ (2001) Surf Sci 494:59–65CrossRefGoogle Scholar
  50. 50.
    Zhu T, Sun SG, van Santen RA, Hensen EJM (2013) J Phys Chem C 117:11251–11257CrossRefGoogle Scholar
  51. 51.
    Foiles SM (1987) Surf Sci 191:L779–L786CrossRefGoogle Scholar
  52. 52.
    Lin RJ, Fu TY (2012) Surf Interface Anal 44:658–661CrossRefGoogle Scholar
  53. 53.
    Yamanaka T, Matsushima T, Tanaka SI, Kamada M (1996) Surf Sci 349:119–128CrossRefGoogle Scholar
  54. 54.
    Voss C, Gaussmann A, Kruse N (1993) Appl Surf Sci 67:142–146CrossRefGoogle Scholar
  55. 55.
    Wang T, Schmidt LD (1981) J Catal 71:411–422CrossRefGoogle Scholar
  56. 56.
    Li T, Marquis EA, Bagot PAJ, Tsang SCE, Smith GDW (2011) Catal Today 175:552–557CrossRefGoogle Scholar
  57. 57.
    Suchorski Y (1998) Ultramicroscopy 73:139–145CrossRefGoogle Scholar
  58. 58.
    Muller O, Roy R (1968) J Less-Common Met 16:129–146CrossRefGoogle Scholar
  59. 59.
    Punnoose A, Seehra MS, Wende I (2001) Fuel Process Technol 74:33–47CrossRefGoogle Scholar
  60. 60.
    Wang CB, Lin HK, Hsu SN, Huang TH, Chiu HC (2002) J Mol Catal A 188:201–208CrossRefGoogle Scholar
  61. 61.
    Seriani N, Pompe W, Ciacchi LC (2006) J Phys Chem B 110:14860–14869CrossRefPubMedGoogle Scholar
  62. 62.
    Weaver JF (2013) Chem Rev 113:4164–4215CrossRefPubMedGoogle Scholar
  63. 63.
    Ono LK, Yuan B, Heinrich H, Roldan Cuenya B (2010) J Phys Chem C 114:22119–22133CrossRefGoogle Scholar
  64. 64.
    Samsonov GV (1982) The oxide handbook, 2nd edn. Plenum Publishing Corporation, New YorkCrossRefGoogle Scholar
  65. 65.
    Weaver JF, Kan HH, Shumbera RB (2008) J Phys: Condens Matter 20:184015Google Scholar
  66. 66.
    Ellinger C, Stierle A, Robinson IK, Nefedov A, Dosch HJ (2008) Phys Condens Matter 20:184013CrossRefGoogle Scholar
  67. 67.
    Moors M, Visart de Bocarmé T, Kruse N (2007) Catal Today 124:61–70CrossRefGoogle Scholar
  68. 68.
    Voss C, Kruse N (1998) Surf Sci 416:L1114–L1117CrossRefGoogle Scholar
  69. 69.
    Visart de Bocarmé T, Chau TD, Kruse N (2007) Surf Interface Anal 39:166–171CrossRefGoogle Scholar
  70. 70.
    Derry GN, Ross PNA (1985) J Chem Phys 82:2772–2778CrossRefGoogle Scholar
  71. 71.
    Lambeets SV, Barroo C, Owczarek S, Genty E, Gilis N, Kruse N, Visart de Bocarmé T (2017) J Phys Chem C 121:16238–16249CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Experimental PhysicsUniversity of WrocławWrocławPoland
  2. 2.Chemical Physics of Materials and Catalysis (CPMCT), Faculty of SciencesUniversité Libre de Bruxelles (ULB)BrusselsBelgium
  3. 3.Interdisciplinary Center for Nonlinear Phenomena and Complex Systems (CENOLI), Faculty of SciencesUniversité Libre de Bruxelles (ULB)BrusselsBelgium

Personalised recommendations