Topics in Catalysis

, Volume 61, Issue 12–13, pp 1274–1282 | Cite as

Spatially Resolved Photoelectron Spectroscopy from Ultra-high Vacuum to Near Ambient Pressure Sample Environments

  • L. GregorattiEmail author
  • M. Al-Hada
  • M. Amati
  • R. Brescia
  • D. Roccella
  • H. Sezen
  • P. Zeller
Original Paper


Modern scanning photoemission microscopes use zone plates to de-magnify the X-ray beam to nanometer size allowing spatially resolved XPS analysis of materials relevant in nanotechnology. So far these microscopes have been designed to operate in the ultra-high or high vacuum environments as all XPS systems; but at the beginning of this century the dream of K. Siegbahn, the inventor of XPS, to use it in the near ambient or ambient pressure regimes became a reality. Despite the fast development and spread of these setups designed for not spatially resolved experiments, now available both as synchrotron and laboratory facilities, it took more than a decade before a similar result could be extended to photoemission microscopy. The scanning photoemission microscope at Elettra is the first instrument where near ambient pressure conditions for in operando analysis can be fulfilled. This paper shows some recent results obtained at this microscope at different sample environment conditions.


In operando Near ambient pressure XPS Scanning photoelectron microscopy Pt nanoparticles Oxidation 



We acknowledge Elettra Sincrotrone Trieste for provision of synchrotron radiation facilities and we would like to thank all the supporting services for assistance in using the beamline Escamicroscopy.


  1. 1.
    Gunther S, Kaulich B, Gregoratti L, Kiskinova M (2002) Prog Surf Sci 70(4–8):187–260CrossRefGoogle Scholar
  2. 2.
    Marsi M, Casalis L, Gregoratti L, Gunther S, Kolmakov A, Kovac J, Lonza D, Kiskinova M (1997) J Electron Spectrosc 84(1–3):73–83CrossRefGoogle Scholar
  3. 3.
    Locatelli A, Bianco A, Cocco D, Cherifi S, Heun S, Marsi M, Pasqualetto M, Bauer E (2003) J Phys IV 104:99–102Google Scholar
  4. 4.
    Siegbahn H, Siegbahn K (1973) J Electron Spectrosc 2:319–323CrossRefGoogle Scholar
  5. 5.
    Starr DE, Liu Z, Hävecker M, Knop-Gericke A, Bluhm H (2013) Chem Soc Rev 42:5833–5857CrossRefPubMedGoogle Scholar
  6. 6.
    Amati M, Abyaneh MK, Gregoratti L (2013) J Instrum 8:T05001CrossRefGoogle Scholar
  7. 7.
    Kolmakov A, Dikin D, Cote LJ, Huang J, Abyaneh MK, Amati M, Gregoratti L, Gunther S, Kiskinova M (2011) Nat Nanotechnol 6:651–657CrossRefPubMedGoogle Scholar
  8. 8.
    Kiskinova M, Casalis L, Gregoratti L, Gunther S, Marsi M (1998) Mat Res Soc Symp Proc 524:203–214CrossRefGoogle Scholar
  9. 9.
    Gregoratti L, Barinov A, Benfatto E, Cautero G, Fava C, Lacovig P, Lonza D, Kiskinova M, Tommasini R, Mähl S, Heichler W (2004) Rev Sci Instrum 75:64–68CrossRefGoogle Scholar
  10. 10.
    Sezen H, Al-Hada M, Amati M, Gregoratti L (2017) Surf Interface Anal. CrossRefGoogle Scholar
  11. 11.
    Sezen H, Alemán B, Amati M, Dalmiglio M, Gregoratti L (2015) ChemCatChem 7(22):3665–3673CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Dan Y, Lu Y, Kybert NJ, Luo Z, Johnson ATC (2009) Nano Lett 9:1472–1475CrossRefPubMedGoogle Scholar
  14. 14.
    He Q, Sudibya GH, Yin S, Wu S, Li H, Boey F, Huang W (2010) ACS Nano 4:3201–3208CrossRefPubMedGoogle Scholar
  15. 15.
    Li XY, Wei ZD, Zhao LQ, Ding W, Zhang Q, Chen SG (2011) Acta Phys-Chim Sin 27:858–862Google Scholar
  16. 16.
    Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) J Am Chem Soc 133:7296–7299CrossRefPubMedGoogle Scholar
  17. 17.
    Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F (2011) Nanoscale 3:20–30CrossRefPubMedGoogle Scholar
  18. 18.
    Raccichini R, Varzi A, Passerini S, Scrosati B (2015) Nat Mater 14:271–279CrossRefPubMedGoogle Scholar
  19. 19.
    Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Electroanalysis 22:1027–1036CrossRefGoogle Scholar
  20. 20.
    Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH (2011) ACS Nano 5:4350–4358CrossRefPubMedGoogle Scholar
  21. 21.
    Kundu P, Nethravathi C, Deshpande PA, Rajamathi M, Madras G, Ravishankar N (2011) Chem Mater 23:2772–2780CrossRefGoogle Scholar
  22. 22.
    Roccella D, Amati M, Sezen H, Brescia R, Gregoratti L (2017) Nano Res. CrossRefGoogle Scholar
  23. 23.
    Scardamaglia M, Aleman B, Amati M, Ewels C, Pochet P, Reckinger N, Colomer J, Skaltsas T, Tagmatarchis N, Snyders R, Gregoratti L, Bittencourt C (2014) Carbon 73:371–381CrossRefGoogle Scholar
  24. 24.
    Barinov A, Ustunel H, Fabris S, Gregoratti L, Aballe L, Dudin P, Baroni S, Kiskinova M (2007) Phys Rev Lett 99(4):046803CrossRefPubMedGoogle Scholar
  25. 25.
    Barinov A, Malcioglu OB, Fabris S, Sun T, Gregoratti L, Dalmiglio M, Kiskinova M (2009) J Phys Chem C 113(21):9009–9013CrossRefGoogle Scholar
  26. 26.
    Bittencourt C, Hecq M, Felten A, Pireaux JJ, Ghijsen J, Felicissimo MP, Rudolf P, Drube W, Ke X, Van Tendeloo G (2008) Chem Phys Lett 462(4):260–264CrossRefGoogle Scholar
  27. 27.
    Mason MG (1983) Phys Rev B 27:748CrossRefGoogle Scholar
  28. 28.
    Okamoto Y (2006) Chem Phys Lett 4–6:382–386CrossRefGoogle Scholar
  29. 29.
    Chi DH, Cuong NT, Kim NA, Tuan NA, Kim YT, Bao HT, Mitani T, Ozaki T, Nagao H (2006) Phys Lett 432:1–3Google Scholar
  30. 30.
    Bond GC, Coq Dutartre BR, Ruiz JG, Hooper AD, Proietti MG, Sierra MCS, Slaa JC (1996) J Catal 161:480–494CrossRefGoogle Scholar
  31. 31.
    Milone C, Neri G, Donato A, Musolino MG, Mercadante L (1996) J Catal 159:253–258CrossRefGoogle Scholar
  32. 32.
    McQuire MW, Rochester CH (1995) J Catal 157:136–399CrossRefGoogle Scholar
  33. 33.
    Over H, Kim YD, Seitsonen AP, Wendt S, Lundgren E, Schmid M, Varga P, Morgante A, Ertl G (2000) Science 287:1474–1476CrossRefPubMedGoogle Scholar
  34. 34.
    Gustafson KPJ, Shatskiy A, Verho O, Kärkäs MD, Schluschass B, Tai CW, Åkermark B, Bäckvall JE, Johnston EV (2017) Catal Sci Technol 7:293–299CrossRefGoogle Scholar
  35. 35.
    Over H (2012) Chem Rev 112:3356–3426CrossRefPubMedGoogle Scholar
  36. 36.
    Toyoshima R, Shimura M, Yoshida M, Monya Y, Suzuki K, Amemiya K, Mase K, Mun BS, Kondoh H (2014) Surf Sci 621:128–132CrossRefGoogle Scholar
  37. 37.
    Qadir K, Kim SM, Seo H, Mun BS, Akgul FA, Liu Z, Park JY (2013) J Phys Chem C 117:13108–13113CrossRefGoogle Scholar
  38. 38.
    Flege JI, Herd B, Goritzka J, Over H, Krasovskii EE, Falta J (2015) ACS Nano 9:8468–8473CrossRefPubMedGoogle Scholar
  39. 39.
    Hrbek J, van Campen DG, Malik IJ (1995) J Vac Sci Technol A 13:1409CrossRefGoogle Scholar
  40. 40.
    Ernst MA, Sloof WG (2008) Surf Int Anal 40:334–337CrossRefGoogle Scholar
  41. 41.
    He YB, Knapp M, Lundgren E, Over H (2005) J Phys Chem B 109:21825–21830CrossRefPubMedGoogle Scholar
  42. 42.
    Yeung H, Chan H, Takoudis CG, Weaver MJ (1997) J Catal 172:336–345CrossRefGoogle Scholar
  43. 43.
    Sezen H, Aleman B, Amati M, Dalmiglio M, Gregoratti L (2015) ChemCatChem 7:3665–3673CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • L. Gregoratti
    • 1
    Email author
  • M. Al-Hada
    • 1
    • 2
  • M. Amati
    • 1
  • R. Brescia
    • 3
  • D. Roccella
    • 4
  • H. Sezen
    • 5
  • P. Zeller
    • 1
  1. 1.Elettra - Sincrotrone Trieste S.C.p.A.TriesteItaly
  2. 2.Department of Physics, College of Education and LinguisticsUniversity of AmranAmranYemen
  3. 3.Electron Microscopy FacilityIstituto Italiano di Tecnologia (IIT)GenoaItaly
  4. 4.Facoltà di Scienze Matematiche, Fisiche e NaturaliUniversità degli Studi di GenovaGenoaItaly
  5. 5.Helmholtz-Zentrum BerlinBerlinGermany

Personalised recommendations