Advertisement

Topics in Catalysis

, Volume 61, Issue 12–13, pp 1263–1273 | Cite as

Morphology Conserving High Efficiency Nitrogen Doping of Titanate Nanotubes by NH3 Plasma

  • Balázs Buchholcz
  • Kamilla Plank
  • Miklós Mohai
  • Ákos Kukovecz
  • János Kiss
  • Imre Bertóti
  • Zoltán Kónya
Original Paper
  • 132 Downloads

Abstract

Titanate nanotubes offer certain benefits like high specific surface area, anisotropic mesoporous structure and ease of synthesis over other nanostructured titania forms. However, their application in visible light driven photocatalysis is hindered by their wide band-gap, which can be remedied by, e.g., anionic doping. Here we report on a systematic study to insert nitrogen into lattice positions in titanate nanotubes. The efficiency of N2+ bombardment, N2 plasma and NH3 plasma treatment is compared to that of NH3 gas synthesized in situ by the thermal decomposition of urea or NH4F. N2+ bombarded single crystalline rutile TiO2 was used as a doping benchmark (16 at.% N incorporated). Surface species were identified by diffuse reflectance infrared spectroscopy, structural features were characterized by scanning electron microscopy and powder X-ray diffraction measurements. The local chemical environment of nitrogen built into the nanotube samples was probed by X-ray photoelectron spectroscopy. Positively charged NH3 plasma treatment offered the best doping performance. This process succeeded in inserting 20 at.% N into nanotube lattice positions by replacing oxygen and forming Ti–N bonds. Remarkably, the nanotubular morphology and titanate crystal structure were both fully conserved during the process. Since plasma treatment is a readily scalable technology, the suggested method could be utilized in developing efficient visible light driven photocatalysts based on N-doped titanate nanotubes.

Keywords

Titanate nanotube N-doping NH3 plasma Morphology Anatase 

Notes

Acknowledgements

The financial support of the Hungarian Research Development and Innovation Office through Grants NKFIH OTKA K 126065 (Á.K.), K 120115 (Z.K.) and GINOP-2.3.2-15-2016-0013 (Á.K., Z.K.) is acknowledged.

References

  1. 1.
    Bavykin DV, Parmon VN, Lapkin AA, Walsh FC (2004) The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J Mater Chem 14(22):3370–3377.  https://doi.org/10.1039/b406378c CrossRefGoogle Scholar
  2. 2.
    Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Formation of titanium oxide nanotube. Langmuir 14(12):3160–3163.  https://doi.org/10.1021/la9713816 CrossRefGoogle Scholar
  3. 3.
    Pótári G, Madarász D, Nagy L, László B, Sápi A, Oszkó A, Kukovecz A, Erdohelyi A, Kónya Z, Kiss J (2013) Rh-induced support transformation phenomena in titanate nanowire and nanotube catalysts. Langmuir 29(9):3061–3072.  https://doi.org/10.1021/la304470v CrossRefPubMedGoogle Scholar
  4. 4.
    Kukovecz Á, Kordás K, Kiss J, Kónya Z (2016) Atomic scale characterization and surface chemistry of metal modified titanate nanotubes and nanowires. Surf Sci Rep 71(3):473–546.  https://doi.org/10.1016/j.surfrep.2016.06.001 CrossRefGoogle Scholar
  5. 5.
    Buchholcz B, Haspel H, Boldizsár T, Kukovecz Á, Kónya Z (2017) pH-regulated antimony oxychloride nanoparticle formation on titanium oxide nanostructures: a photocatalytically active heterojunction. CrystEngComm 19(10):1408–1416.  https://doi.org/10.1039/c6ce02340a CrossRefGoogle Scholar
  6. 6.
    Buchholcz B, Haspel H, Oszkó A, Kukovecz A, Kónya Z (2017) Titania nanotube stabilized BiOCl nanoparticles in visible-light photocatalysis. RSC Adv 7(27):16410–16422.  https://doi.org/10.1039/c6ra28490f CrossRefGoogle Scholar
  7. 7.
    Sluban M, Cojocaru B, Parvulescu VI, Iskra J, Korošec RC, Umek P (2017) Protonated titanate nanotubes as solid acid catalyst for aldol condensation. J Catal 346:161–169.  https://doi.org/10.1016/j.jcat.2016.12.015 CrossRefGoogle Scholar
  8. 8.
    Kuwahara Y, Fujie Y, Yamashita H (2017) Poly-(ethyleneimine)-tethered Ir complex catalyst immobilized in titanate nanotubes for hydrogenation of CO2 to formic acid. ChemCatChem 9(11):1906–1914.  https://doi.org/10.1002/cctc.201700508 CrossRefGoogle Scholar
  9. 9.
    Aouadi I, Touati H, Tatibouët J-M, Bergaoui L (2017) Titanate nanotubes as ethanol decomposition catalysts: effect of coupling photocatalysis with non-thermal plasma. J Photochem Photobiol A 346:485–492.  https://doi.org/10.1016/j.jphotochem.2017.06.030 CrossRefGoogle Scholar
  10. 10.
    Sandoval A, Hernández-Ventura C, Klimova TE (2017) Titanate nanotubes for removal of methylene blue dye by combined adsorption and photocatalysis. Fuel 198:22–30.  https://doi.org/10.1016/j.fuel.2016.11.007 CrossRefGoogle Scholar
  11. 11.
    László B, Baán K, Varga E, Oszkó A, Erdőhelyi A, Kónya Z, Kiss J (2016) Photo-induced reactions in the CO2-methane system on titanate nanotubes modified with Au and Rh nanoparticles. Appl Catal B 199:473–484.  https://doi.org/10.1016/j.apcatb.2016.06.057 CrossRefGoogle Scholar
  12. 12.
    Bavykin DV, Walsh FC (2007) Kinetics of alkali metal ion exchange into nanotubular and nanofibrous titanates. J Phys Chem C 111(40):14644–14651.  https://doi.org/10.1021/jp073799a CrossRefGoogle Scholar
  13. 13.
    Bavykin DV, Lapkin AA, Plucinski PK, Friedrich JM, Walsh FC (2005) Reversible storage of molecular hydrogen by sorption into multilayered TiO2 nanotubes. J Phys Chem B 109(41):19422–19427.  https://doi.org/10.1021/jp0536394 CrossRefPubMedGoogle Scholar
  14. 14.
    Paris J, Bernhard Y, Boudon J, Heintz O, Millot N, Decréau R (2015) Phthalocyanine–titanate nanotubes: a promising nanocarrier detectable by optical imaging in the so-called imaging window. RSC Adv 5(9):6315–6322.  https://doi.org/10.1039/c4ra13988g CrossRefGoogle Scholar
  15. 15.
    Yang D, Wang X, Ai Q, Shi J, Jiang Z (2015) Performance comparison of immobilized enzyme on the titanate nanotube surfaces modified by poly-(dopamine) and poly-(norepinephrine). RSC Adv 5(53):42461–42467.  https://doi.org/10.1039/c5ra02420j CrossRefGoogle Scholar
  16. 16.
    Chen Q, Du G, Zhang S, Peng L-M (2002) The structure of trititanate nanotubes. Acta Crystallogr Sect B 58(4):587–593.  https://doi.org/10.1107/S0108768102009084 CrossRefGoogle Scholar
  17. 17.
    Dmitry V, Walsh C (2010) Titanate and titania nanotubes: synthesis, properties and applications. Royal Society of Chemisty, Cambridge,  https://doi.org/10.1039/9781849730778 CrossRefGoogle Scholar
  18. 18.
    Kukovecz Á, Hodos M, Horváth E, Radnóczi G, Kónya Z, Kiricsi I (2005) Oriented crystal growth model explains the formation of titania nanotubes. J Phys Chem B 109(38):17781–17783.  https://doi.org/10.1021/jp054320m CrossRefPubMedGoogle Scholar
  19. 19.
    Diebold U (2003) The surface science of titanium-dioxide. Surf Sci Rep 48(5):53–229.  https://doi.org/10.1016/S0167-5729(02)00100-0 CrossRefGoogle Scholar
  20. 20.
    Wang L, Sasaki T (2014) Titanium-oxide nanosheets: graphene analogues with versatile functionalities. Chem Rev 114(19):9455–9486.  https://doi.org/10.1021/cr400627u CrossRefPubMedGoogle Scholar
  21. 21.
    Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann J-M (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B 31(2):145–157.  https://doi.org/10.1016/S0926-3373(00)00276-9 CrossRefGoogle Scholar
  22. 22.
    Thiruvenkatachari R, Vigneswaran S, Moon IS (2008) A review on UV/TiO2 photocatalytic oxidation process (Journal Review). Korean J Chem Eng 25(1):64–72.  https://doi.org/10.1007/s11814-008-0011-8 CrossRefGoogle Scholar
  23. 23.
    Halasi G, Schubert GB, Solymosi F (2012) Photodecomposition of formic acid on N-doped and metal-promoted TiO2 production of CO-free H2. J Phys Chem C 116(29):15396–15405.  https://doi.org/10.1021/jp3030478 CrossRefGoogle Scholar
  24. 24.
    Kumar SG, Devi LG (2011) Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A 115(46):13211–13241.  https://doi.org/10.1021/jp204364a CrossRefPubMedGoogle Scholar
  25. 25.
    Rehman S, Ullah R, Butt A, Gohar N (2009) Strategies of making TiO2 and ZnO visible light active. J Hazard Mater 170(2):560–569.  https://doi.org/10.1016/j.jhazmat.2009.05.064 CrossRefPubMedGoogle Scholar
  26. 26.
    Qin W, Zhang D, Zhao D, Wang L, Zheng K (2010) Near-infrared photocatalysis based on YF3: Yb3+, Tm3+/TiO2 core/shell nanoparticles. Chem Commun 46(13):2304–2306.  https://doi.org/10.1039/b924052g CrossRefGoogle Scholar
  27. 27.
    Tang Y, Di W, Zhai X, Yang R, Qin W (2013) NIR-responsive photocatalytic activity and mechanism of NaYF4: Yb, Tm@ TiO2 core–shell nanoparticles. ACS Catal 3(3):405–412.  https://doi.org/10.1021/cs300808r CrossRefGoogle Scholar
  28. 28.
    Henderson MA (2011) A surface science perspective on photocatalysis. Surf Sci Rep 66(6):185–297.  https://doi.org/10.1016/j.surfrep.2011.01.001 CrossRefGoogle Scholar
  29. 29.
    Park MS, Kwon S, Min B (2002) Electronic structures of doped anatase TiO2: Ti1–xMxO2 (M = Co, Mn, Fe, Ni). Phys Rev B 65(16):161201.  https://doi.org/10.1103/PhysRevB.65.161201 CrossRefGoogle Scholar
  30. 30.
    Kočí K, Matějů K, Obalová L, Krejčíková S, Lacný Z, Plachá D, Čapek L, Hospodková A, Šolcová O (2010) Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Appl Catal B 96(3):239–244.  https://doi.org/10.1016/j.apcatb.2010.02.030 CrossRefGoogle Scholar
  31. 31.
    Dozzi MV, Selli E (2013) Doping TiO2 with p-block elements: effects on photocatalytic activity. J Photochem Photobiol C 14:13–28.  https://doi.org/10.1016/j.jphotochemrev.2012.09.002 CrossRefGoogle Scholar
  32. 32.
    Devi LG, Kavitha R (2013) A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity. Appl Catal B 140:559–587.  https://doi.org/10.1016/j.apcatb.2013.04.035 CrossRefGoogle Scholar
  33. 33.
    Serpone N (2006) Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J Phys Chem B 110(48):24287–24293.  https://doi.org/10.1021/jp065659r CrossRefPubMedGoogle Scholar
  34. 34.
    Gracia F, Holgado JP, Caballero A, Gonzalez-Elipe AR (2004) Structural, optical, and photoelectrochemical properties of Mn+–TiO2 model thin film photocatalysts. J Phys Chem B 108(45):17466–17476.  https://doi.org/10.1021/jp0484938 CrossRefGoogle Scholar
  35. 35.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271.  https://doi.org/10.1126/science.1061051 CrossRefPubMedGoogle Scholar
  36. 36.
    Sato S (1986) Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chem Phys Lett 123(1–2):126–128.  https://doi.org/10.1016/0009-2614(86)87026-9 CrossRefGoogle Scholar
  37. 37.
    Jagadale TC, Takale SP, Sonawane RS, Joshi HM, Patil SI, Kale BB, Ogale SB (2008) N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol–gel method. J Phys Chem C 112(37):14595–14602.  https://doi.org/10.1021/jp803567f CrossRefGoogle Scholar
  38. 38.
    Hanaor DA, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46(4):855–874.  https://doi.org/10.1007/s10853-010-5113-0 CrossRefGoogle Scholar
  39. 39.
    Buchholcz B, Varga E, Varga T, Plank K, Kiss J, Kónya Z (2017) Structure and stability of boron doped titanate nanotubes and nanowires. Vacuum 138:120–124.  https://doi.org/10.1016/j.vacuum.2016.11.038 CrossRefGoogle Scholar
  40. 40.
    Pusztai P, Puskás R, Varga E, Erdőhelyi A, Kukovecz Á, Kónya Z, Kiss J (2014) Influence of gold additives on the stability and phase transformation of titanate nanostructures. Phys Chem Chem Phys 16(48):26786–26797.  https://doi.org/10.1039/c4cp04084h CrossRefPubMedGoogle Scholar
  41. 41.
    Halasi G, Schubert G, Solymosi F (2012) Comparative study on the photocatalytic decomposition of methanol on TiO2 modified by N and promoted by metals. J Catal 294:199–206.  https://doi.org/10.1016/j.jcat.2012.07.020 CrossRefGoogle Scholar
  42. 42.
    Joung S-K, Amemiya T, Murabayashi M, Itoh K (2006) Relation between photocatalytic activity and preparation conditions for nitrogen-doped visible light-driven TiO2 photocatalysts. Appl Catal A 312:20–26.  https://doi.org/10.1016/j.apcata.2006.06.027 CrossRefGoogle Scholar
  43. 43.
    Wang Z, Cai W, Hong X, Zhao X, Xu F, Cai C (2005) Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO2 suspensions with various light sources. Appl Catal B 57(3):223–231.  https://doi.org/10.1016/j.apcatb.2004.11.008 CrossRefGoogle Scholar
  44. 44.
    Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini MC, Giamello E (2007) N-doped TiO2: theory and experiment. Chem Phys 339(1):44–56.  https://doi.org/10.1016/j.chemphys.2007.07.020 CrossRefGoogle Scholar
  45. 45.
    Buchholcz B, Haspel H, Kukovecz Á, Kónya Z (2014) Low-temperature conversion of titanate nanotubes into nitrogen-doped TiO2 nanoparticles. CrystEngComm 16(32):7486–7492.  https://doi.org/10.1039/c4ce00801d CrossRefGoogle Scholar
  46. 46.
    Chang J-C, Tsai W-J, Chiu T-C, Liu C-W, Chao J-H, Lin C-H (2011) Chemistry in a confined space: characterization of nitrogen-doped titanium oxide nanotubes produced by calcining ammonium trititanate nanotubes. J Mater Chem 21(12):4605–4614.  https://doi.org/10.1039/c0jm03058a CrossRefGoogle Scholar
  47. 47.
    Maeda M, Watanabe T (2006) Visible light photocatalysis of nitrogen-doped titanium oxide films prepared by plasma-enhanced chemical vapor deposition. J Electrochem Soc 153(3):C186-C189.  https://doi.org/10.1149/1.2165773 CrossRefGoogle Scholar
  48. 48.
    Bertóti I (2012) Nitrogen modified metal oxide surfaces. Catal Today 181(1):95–101.  https://doi.org/10.1016/j.cattod.2011.06.017 CrossRefGoogle Scholar
  49. 49.
    Sullivan JL, Saied SO, Bertoti I (1991) Effect of ion and neutral sputtering on single crystal TiO2. Vacuum 42(18):1203–1208.  https://doi.org/10.1016/0042-207X(91)90131-2 CrossRefGoogle Scholar
  50. 50.
    Bertóti I, Kelly R, Mohai M, Tóth A (1992) A possible solution to the problem of compositional change with ion-bombarded oxides. Surf Interface Anal 19(1–12):291–297.  https://doi.org/10.1002/sia.740190155 CrossRefGoogle Scholar
  51. 51.
    Bertóti I, Kelly R, Mohai M, Tóth A (1993) Response of oxides to ion bombardment: the difference between inert and reactive ions. Nuclear Instrum Methods Phys Res Sect B 80–81 (Part 2):1219–1225.  https://doi.org/10.1016/0168-583X(93)90770-7
  52. 52.
    Mohai M (2004) XPS MultiQuant: multimodel XPS quantification software. Surf Interface Anal 36(8):828–832.  https://doi.org/10.1002/sia.1775 CrossRefGoogle Scholar
  53. 53.
    Mohai M, Bertoti I (2004) Calculation of overlayer thickness on curved surfaces based on XPS intensities. Surf Interface Anal 36(8):805–808.  https://doi.org/10.1002/sia.1769 CrossRefGoogle Scholar
  54. 54.
    Reilman RF, Msezane A, Manson ST (1976) Relative intensities in photoelectron spectroscopy of atoms and molecules. J Electron Spectrosc Relat Phenom 8(5):389–394.  https://doi.org/10.1016/0368-2048(76)80025-4 CrossRefGoogle Scholar
  55. 55.
    Bavykin DV, Friedrich JM, Lapkin AA, Walsh FC (2006) Stability of aqueous suspensions of titanate nanotubes. Chem Mater 18(5):1124–1129.  https://doi.org/10.1021/cm0521875 CrossRefGoogle Scholar
  56. 56.
    Diwald O, Thompson TL, Zubkov T, Walck SD, Yates JT (2004) Photochemical activity of nitrogen-doped rutile TiO2(110) in visible light. J Phys Chem B 108(19):6004–6008.  https://doi.org/10.1021/jp031267y CrossRefGoogle Scholar
  57. 57.
    Thompson TL, Yates JT (2006) Surface science studies of the photoactivation of TiO2—new photochemical processes. Chem Rev 106(10):4428–4453.  https://doi.org/10.1021/cr050172k CrossRefPubMedGoogle Scholar
  58. 58.
    Beranek R, Kisch H (2008) Tuning the optical and photoelectrochemical properties of surface-modified TiO2. Photochem Photobiol Sci 7(1):40–48.  https://doi.org/10.1039/B711658F CrossRefPubMedGoogle Scholar
  59. 59.
    Souto S, Alvarez F (1997) The role of hydrogen in nitrogen-containing diamondlike films studied by photoelectron spectroscopy. Appl Phys Lett 70(12):1539–1541.  https://doi.org/10.1063/1.118611 CrossRefGoogle Scholar
  60. 60.
    Batzill M, Morales EH, Diebold U (2006) Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. Phys Rev Lett 96(2):026103.  https://doi.org/10.1103/PhysRevLett.96.026103 CrossRefPubMedGoogle Scholar
  61. 61.
    Jung SM, Grange P (2000) The investigation of mechanism of SCR reaction on a TiO2-SO4 2– catalyst by DRIFTS. Appl Catal B 27(1):L11-L16.  https://doi.org/10.1016/S0926-3373(00)00145-4 CrossRefGoogle Scholar
  62. 62.
    Ramis G, Busca G, Lorenzelli V, Forzatti P (1990) Fourier transform infrared study of the adsorption and coadsorption of nitric oxide, nitrogen dioxide and ammonia on TiO2 anatase. Appl Catal 64:243–257.  https://doi.org/10.1016/S0166-9834(00)81564-X CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Balázs Buchholcz
    • 1
  • Kamilla Plank
    • 1
  • Miklós Mohai
    • 2
  • Ákos Kukovecz
    • 1
  • János Kiss
    • 3
    • 4
  • Imre Bertóti
    • 2
  • Zoltán Kónya
    • 1
    • 4
  1. 1.Department of Applied and Environmental ChemistryUniversity of SzegedSzegedHungary
  2. 2.Hungarian Academy of Sciences (HAS), Research Centre of Natural SciencesInstitute of Materials and Environmental ChemistryBudapestHungary
  3. 3.Department of Physical Chemistry and Materials ScienceUniversity of SzegedSzegedHungary
  4. 4.MTA-SZTE Reaction Kinetics and Surface Chemistry Research GroupUniversity of SzegedSzegedHungary

Personalised recommendations