Topics in Catalysis

, Volume 61, Issue 15–17, pp 1734–1745 | Cite as

New Insights into the Role of the Synthesis Procedure on the Performance of Co-Based Catalysts for Ethanol Steam Reforming

  • Ilenia Rossetti
  • Barbara Bonelli
  • Gianguido Ramis
  • Elnaz Bahadori
  • Roberto Nasi
  • Antonio Aronne
  • Serena EspositoEmail author
Original Paper


Co/SiO2 catalysts with two Co contents of 10 and 30 mol% were prepared and used in ethanol steam reforming. With the aim of tailoring the materials features by varying the synthesis parameters, two different sol–gel procedures were designed, namely a modified hydrolytic alkoxide sol–gel synthesis and a (non-ionic) surfactant assisted one. Effect of the synthesis procedure on the physico-chemical properties of the prepared catalysts is in the focus of the present investigation. The obtained Co/SiO2 catalysts were characterized by means of X-rays powder diffraction, diffuse reflectance UV–Vis spectroscopy, N2 adsorption/desorption isotherms at − 196 °C, field emission scanning electron microscopy equipped with energy dispersive X-ray probe, temperature-programmed reduction and CO adsorption at nominal − 196 °C as followed by IR spectroscopy. The oxidation state of Co species within the SiO2 matrix was affected by the synthesis method. In particular, the non-ionic surfactant, acting both as pores template and as chelating agent of Co ions during the synthesis, prevented the formation of Co3O4 phase leading to a higher dispersion and higher temperature reducibility of Co species with respect to samples with same Co content synthesized without surfactant. The fine balance between Co dispersion and reducibility was the fundamental parameter governing the activity of the Co/SiO2 catalysts in terms of H2 production, CO/CO2 ratio and C balance during ethanol steam reforming.


Cobalt catalysts Porous SiO2 Sol–gel synthesis Non-ionic surfactants Ethanol steam reforming 



Authors thank Dr. Mauro Raimondo (Politecnico di Torino, Italy) for FESEM measurements.


  1. 1.
    Esposito S, Setaro A, Maddalena P, Aronne A, Pernice P, Laracca M (2011) J Sol-Gel Sci Technol 60:388–394CrossRefGoogle Scholar
  2. 2.
    Zhang F, Zhang S, Guan N, Schreier E, Richter M, Eckelt R, Fricke R (2007) Appl Catal B 73:209–219CrossRefGoogle Scholar
  3. 3.
    Li N, Wang X, Derrouiche S, Haller SD, Pfefferle LD (2010) ACS Nano 4(3):1759–1767CrossRefGoogle Scholar
  4. 4.
    Cui H, Zhang Y, Qui Z, Zhao L, Zhu Y (2010) Appl Catal B 101:45–53CrossRefGoogle Scholar
  5. 5.
    Esposito S, Bonelli B, Armandi M, Garrone E, Saracco G (2015) PhysChemChemPhys 17:10774–10780Google Scholar
  6. 6.
    Puskas I, Fleisch TH, Full PR, Kaduk JA, Marshall CL, Meyers BL (2006) Appl Catal A 311:146–154CrossRefGoogle Scholar
  7. 7.
    Da Silva ALM, den Breejen JP, Mattos LV, Bitter JH, de Jong KP, Noronha FB (2014) J Catal 318:67–74CrossRefGoogle Scholar
  8. 8.
    Artero V, Chavarot-Kerlidou M, Fontecave M (2011) Angew Chem Int Ed 50:7238–7272CrossRefGoogle Scholar
  9. 9.
    Tüysüz H, Hwang YJ, Khan SB, Asiri AM, Yang P (2013) Nano Res 6(1):47–54CrossRefGoogle Scholar
  10. 10.
    Deng X, Tu H (2014) ACS Catal 4:3701–3714CrossRefGoogle Scholar
  11. 11.
    Bonelli B, Armandi M, Hernandez S, Vankova S, Celasco E, Tomatis M, Saracco G, Garrone E (2014) PhysChemChemPhys 16(15):7074–7082Google Scholar
  12. 12.
    Saracco G, Vankova S, Pagliano C, Bonelli B, Garrone E (2014) PhysChemChemPhys 16(13):6139–6145Google Scholar
  13. 13.
    Hernández S, Bensaid S, Armandi M, Sacco A, Chiodoni A, Bonelli B, Garrone E, Pirri C, Saracco G (2014) Chem Eng J 238:17–26CrossRefGoogle Scholar
  14. 14.
    Armandi M, Hernandez S, Vankova S, Zanarini S, Bonelli B, Garrone E (2013) ACS Catal 3(6):1272–1278CrossRefGoogle Scholar
  15. 15.
    Zanarini S, Vankova S, Hernandez S, Ijeri VS, Armandi M, Garrone E, Bonelli B, Onida B, Spinelli P (2012) Chem Commun 48(46):5754–5756CrossRefGoogle Scholar
  16. 16.
    Sohn H, Ozkan US (2016) Energy Fuel 30:5309–5322CrossRefGoogle Scholar
  17. 17.
    Contreras JL, Salmones J, Colín-Luna JA, Nuño L, Quintana B, Córdova I, Zeifert B, Tapia C, Fuentes GA (2014) Int J Hydrogen Energy 39:18835–18853CrossRefGoogle Scholar
  18. 18.
    Finocchio E, Rossetti I, Ramis G (2013) Int J Hydrogen Energy 38:3213–3225CrossRefGoogle Scholar
  19. 19.
    Rossetti I, Lasso J, Nichele V, Signoretto M, Finocchio E, Ramis G, Di Michele A (2014) Appl Catal B 150–151:257–267CrossRefGoogle Scholar
  20. 20.
    Fatsikostas AN, Verykios XE (2004) J Catal 225:439–452CrossRefGoogle Scholar
  21. 21.
    Vicente J, Montenero C, Ereña J, Azkoiti MJ, Bilbao J, Gayubo AG (2014) Int J Hydrogen Energy 39:12586–12596CrossRefGoogle Scholar
  22. 22.
    Rossetti I, Biffi C, Bianchi CL, Nichele V, Signoretto M, Menegazzo F, Finocchio E, Ramis G, Di Michele A (2012) Appl Catal B 117–118:384–396CrossRefGoogle Scholar
  23. 23.
    Esposito S, Turco M, Ramis G, Bagnasco G, Pernice P, Pagliuca C, Bevilacqua M, Aronne A (2007) J Solid State Chem 180:3341–3350CrossRefGoogle Scholar
  24. 24.
    Khodakov AY, Griboval-Constant A, Bechara R, Villain F (2001) J Phys Chem B 105:9805–9811CrossRefGoogle Scholar
  25. 25.
    Vizcaíno AJ, Carrero A, Calles JA (2016) Fuel Process Technol 146:99–109CrossRefGoogle Scholar
  26. 26.
    Minieri L, Esposito S, Russo V, Bonelli B, Di Serio M, Silvestri B, Vergara A, Aronne A (2017) ChemCatChem 9(8):1476–1486CrossRefGoogle Scholar
  27. 27.
    Esposito S, Sannino F, Pansini M, Bonelli B, Garrone E (2013) J Phys Chem C 117(21):11203–11210CrossRefGoogle Scholar
  28. 28.
    Danks AE, Hall SR, Schnepp Z (2016) Mater Horiz 3:91–112CrossRefGoogle Scholar
  29. 29.
    Sannino F, Ruocco S, Marocco A, Esposito S, Pansini M (2013) Microporous Mesoporous Mater 180:178–186CrossRefGoogle Scholar
  30. 30.
    Esposito S, Turco M, Bagnasco G, Cammarano C, Pernice P (2011) Appl Catal A 403(1–2):128–135CrossRefGoogle Scholar
  31. 31.
    Vinu A, Dědeček J, Murugesan V, Harmann M (2002) Chem Mater 14:2433–2435CrossRefGoogle Scholar
  32. 32.
    El Haskouri J, Cabrera S, Gómez-García CJ, Guillem C, Latorre J, Beltrán D, Marcos MD, Amorós P (2004) Chem Mater 16:2805–2813CrossRefGoogle Scholar
  33. 33.
    Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Angew Int Ed 45:3216–3251CrossRefGoogle Scholar
  34. 34.
    Boissièr C, Larbot A, Bourgaux C, Prouzet E, Bunton CA (2001) Chem Mater 13:3580–3586CrossRefGoogle Scholar
  35. 35.
    Compagnoni M, Lasso J, Di Michele A, Rossetti I (2016) Catal Sci Technol 6:6247–6257CrossRefGoogle Scholar
  36. 36.
    Göltner-Spickermann C (2002) Curr. Opin. Colloid Interface Sci. 7:173–178CrossRefGoogle Scholar
  37. 37.
    Göltner GC, Smarsly B, Berton B, Antonietti M (2001) Chem Mater 13:1617–1624CrossRefGoogle Scholar
  38. 38.
    Bagnasco G, Cammarano C, Turco M, Esposito S, Pernice P, Aronne A (2008) Thermochim Acta 471:51–54CrossRefGoogle Scholar
  39. 39.
    Bonelli B, Onida B, Chen JD, Galarneau A, Di Renzo F, Fajula F, Garrone E (2004) Microporous Mesoporous Mater 67(1):95–106CrossRefGoogle Scholar
  40. 40.
    Hadjivanov KI, Vayssilov GN (2002) Adv. Catal. 47:307–511Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ilenia Rossetti
    • 1
  • Barbara Bonelli
    • 2
  • Gianguido Ramis
    • 3
  • Elnaz Bahadori
    • 1
  • Roberto Nasi
    • 2
  • Antonio Aronne
    • 4
  • Serena Esposito
    • 5
    Email author
  1. 1.Dipartimento di ChimicaUniversità Degli Studi di Milano, INSTM Unit Milano-Università and CNR-ISTMMilanoItaly
  2. 2.Dipartimento di Scienza Applicata e Tecnologia, Politecnico di TorinoINSTM Unit of Torino-PolitecnicoTorinoItaly
  3. 3.Dipartimento di Ingegneria Civile, Chimica e AmbientaleUniversità degli Studi di Genova and INSTM Unit GenovaGenovaItaly
  4. 4.Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione IndustrialeUniversità degli Studi di Napoli Federico IINapoliItaly
  5. 5.Dipartimento di Ingegneria Civile e Meccanica and INSTM UnitUniversità degli Studi di Cassino e del Lazio MeridionaleCassinoItaly

Personalised recommendations