Topics in Catalysis

, Volume 61, Issue 15–17, pp 1574–1584 | Cite as

Mg(OH)2 Films Prepared by Ink-Jet Printing and Their Photocatalytic Activity in CO2 Reduction and H2O Conversion

  • E. Luévano-Hipólito
  • Leticia M. Torres MartínezEmail author
Original Paper


Mg(OH)2 films on Al substrates were fabricated by ink-jet printing, and they were applied as photocatalysts in solar fuels production (H2 and CH3OH) from CO2 and H2O conversion. The films were fabricated by means of a deposition of a solution composed of magnesium complex nanoparticles over aluminum foils, which were submitted to a heat treatment to promote the crystallization of Mg(OH)2. The films were characterized by razing incidence X-ray diffraction (GZXD), Fourier-transform infrared spectroscopy (FTIR), Scanning electronic microscopy, X-ray photoelectron spectroscopy (XPS), and N2 physisorption by BET method. The Mg(OH)2 was detected in all the samples synthesized with 1 to 40 layers. According to XPS and FTIR analysis, it was detected the presence of carbonates related to Mg3O(CO3)2 and Al0 and Al3+ due to the substrate. The highest photocatalytic activity was reached using 30 layers of Mg(OH)2 for H2 and CH3OH generation, which it was 268 and 15 µmol g− 1h− 1, respectively. These results were associated to the presence of adequate amounts of MgO and Al2O3 that promote an efficient transfer of the photogenerated electrons between them. Furthermore, the formation of porous structures with high surface area and relative high roughness promoted an increase in the mass transport between the gas and liquid phase, which increase the effectiveness of the photocatalysts.


Mg(OH)2 CO2 reduction Methanol Hydrogen Solar fuels 



The authors wish to thank CONACYT for financial support for this research through the following projects: Cátedras CONACYT 1060, CONACYT-CB-2014-23704, CONACYT-PDCPN-2015-487, CONACYT-NRF-2016-278729, and SEP-INTEGRACIÓN DE REDES TEMÁTICAS 2015-CA-244.

Supplementary material

11244_2018_966_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 24 KB)
11244_2018_966_MOESM2_ESM.docx (211 kb)
Supplementary material 2 (DOCX 210 KB)
11244_2018_966_MOESM3_ESM.docx (62 kb)
Supplementary material 3 (DOCX 61 KB)


  1. 1.
    Léonard GLM, Malengreaux CM, Mélotte Q, Lambert SD, Bruneel E, Van Driessche I, Heinrichs B (2016) J Environ Chem Eng 4:449CrossRefGoogle Scholar
  2. 2.
    Arabatzis IM, Stergiopoulos T, Bernard MC, Labou D, Neophytides SG, Falaras P (2003) Appl Catal B 42:187CrossRefGoogle Scholar
  3. 3.
    Lin CP, Chen P, Nakaruk A, Koshy P, Sorrell CC (2013) Energy Procedia 34:627CrossRefGoogle Scholar
  4. 4.
    Aal AA, Sawsan AM, Aboul-Gheit AK (2009) Nanoscale Res Lett 4:627CrossRefGoogle Scholar
  5. 5.
    Arin M, Lommens P, Avci N, Hopkins SC, De Buysser K, Arabatzis IM, Fasaki I, Poelman D, Van Driessche I (2011) J Eur Ceram Soc 31:1067CrossRefGoogle Scholar
  6. 6.
    Shen W, Zhao Y, Zhang C (2005) Thin Solid Films 483:382CrossRefGoogle Scholar
  7. 7.
    Xu Y, Schoonen MAA (2000) Am Miner 85:543CrossRefGoogle Scholar
  8. 8.
    Giorgi R, Bozzi C, Dei L, Gabbiani C, Ninham BW, Baglioni P (2005) Langmuir 21:8495CrossRefGoogle Scholar
  9. 9.
    Genovese A, Shanks RA (2007) Polym Degrad Stab 92:2CrossRefGoogle Scholar
  10. 10.
    Feng H, Wu S, Huang S, Wu Y, Gao J (2015) Fuel 159:559CrossRefGoogle Scholar
  11. 11.
    Zhu Y, Wu G, Zhang YH, Zhao Q (2011) Appl Surf Sci 257:6129CrossRefGoogle Scholar
  12. 12.
    Mageshwari K, Sathyamoorthy R (2012) Trans Indian Inst Metals 65:49CrossRefGoogle Scholar
  13. 13.
    Momenian HR, Gholamrezaei S, Salavati-Niasari M, Pedram B, Mozaffar F, Ghanbari D (2013) J Clust Sci 24:1031CrossRefGoogle Scholar
  14. 14.
    Lu Y, Jiang H, Jing BN, Zhang M, Liu JK, Wang SH (2014) Adv Funct Mater 29:28Google Scholar
  15. 15.
    Nabiyouni G, Ghanbari D, Karimzadeh S, Samani Ghalehtaki B (2014) J Nanostruct 4:467Google Scholar
  16. 16.
    Fujino T, Matzuda T (2006) Mater Trans 47:2335CrossRefGoogle Scholar
  17. 17.
    Feng J, Chen Y, Liu X, Liu T, Zou L, Wang Y, Ren Y, Fan Z, Lv Y, Zhang M (2013) Mater Chem Phys 143:322CrossRefGoogle Scholar
  18. 18.
    Wu F, Liang J, Li W (2015) J Magnes Alloys 3:231CrossRefGoogle Scholar
  19. 19.
    Mao Q, Zhang L, Huang D, Wang D, Huang Y, Xu H, Cao H, Mao Z (2011) Surf Interface Anal 43:903CrossRefGoogle Scholar
  20. 20.
    Wang M, Han XW, Liu L, Zeng XF, Zou HK, Wang JX, Chen JF (2015) Ind Eng Chem Res 54:12805CrossRefGoogle Scholar
  21. 21.
    Song GL, Unocic KA (2005) Corros Sci 98:758CrossRefGoogle Scholar
  22. 22.
    Lü Y, Lai Y, Zhang Z, Liu Y (2009) ECS Trans 19:39Google Scholar
  23. 23.
    Shanmugan S, Anithambigai P, Mutharasu D (2012) Int J Adv Stud Comput Sci Eng 1:63Google Scholar
  24. 24.
    Das PS, Dey A, Mandal AK, Dey N, Mukhopadhyay AK (2013) J Adv Ceram 2:173CrossRefGoogle Scholar
  25. 25.
    Pei J, Li R, Li Y, Du H (2015) J Chem 1:1CrossRefGoogle Scholar
  26. 26.
    Zhao YF, Li C, Lu S, Gong YY, Niu LY, Liu XJ (2016) Chem Phys Lett 654:13CrossRefGoogle Scholar
  27. 27.
    Long X, Wang Z, Xiao S, An Y, Yang S (2016) Mater Today 19:213CrossRefGoogle Scholar
  28. 28.
    Chowdhury IH, Chowdhury AH, Bose P, Mandal S, Naskar MK (2016) RSC Adv 6:6038CrossRefGoogle Scholar
  29. 29.
    Lu Y, Jiang H, Jing BN, Zhang M, Liu JK, Wang SH (2014) Mater Technol 29:28CrossRefGoogle Scholar
  30. 30.
    Liu M, Wang Y, Chen L, Zhang Y, Lin Z (2015) ACS Appl Mater Interfaces 7:7961CrossRefGoogle Scholar
  31. 31.
    NIST X-ray photoelectron spectroscopy database. NIST Standard Reference Database 20, Version 4.1Google Scholar
  32. 32.
    Barr TL (1990) Zeolites 10:760CrossRefGoogle Scholar
  33. 33.
    Yu X-Y, Luo T, Jia Y, Zhang Y-X, Liu J-H, Huang X-J (2011) J Phys Chem C 115:22242CrossRefGoogle Scholar
  34. 34.
    Bancroft GM, Nesbitt HW, Ho R, Shaw DM, Tse JS, Biesinger MC (2009) Phys Rev B 80:075405–075401CrossRefGoogle Scholar
  35. 35.
    Kerber SJ, Bruckner JJ, Wozniak K, Seal S, Hardcastle S, Barr TL (1996) J Vac Sci Technol A 14:1314CrossRefGoogle Scholar
  36. 36.
    Roustila A, Chêne J, Séverac C (2007) Int J Hydrogen Energy 32:5026CrossRefGoogle Scholar
  37. 37.
    Roy M, Mali K, Joshi N, Misra DS, Kulshreshtha SK (2007) Diam Relat Mater 16:517CrossRefGoogle Scholar
  38. 38.
    Permatasari FA, Aimon AH, Iskandar F, Ogi T, Okuyama K (2016) Sci Rep 6:1CrossRefGoogle Scholar
  39. 39.
    Kumari L, Li WZ, Vannoy CH, Leblanc RM, Wang DZ (2009) Ceram Int 35:3355CrossRefGoogle Scholar
  40. 40.
    Li X, Low J, Yu J (2016) Photocatalysis: applications, Chap. 10 Photocatalytic hydrogen generation 1:255. ISBN: 978-1-78262-041-9Google Scholar
  41. 41.
    Sayarna K, Arakawa H (1996) J Photochem Photobiol A Chem 94:67CrossRefGoogle Scholar
  42. 42.
    Li K, An X, Park KH, Khraisheh M (2014) J Catal Today 224:3CrossRefGoogle Scholar
  43. 43.
    Wu JCS, Lin HM (2005) Int J Photoenergy 7:115CrossRefGoogle Scholar
  44. 44.
    Liou PY, Chen SC, Wu JCS, Liu D, Mackintosh S, Maroto-Valer M, Linforth R (2011) Energy Environ Sci 4:1487CrossRefGoogle Scholar
  45. 45.
    Zhu C, Wang H, Li G, An S, Ding X, Teng HH, Zhao L (2017) Minerals 7:172CrossRefGoogle Scholar
  46. 46.
    Adamczyk A, Długon E (2012) Spectrochim Acta Mol Bio 89:11CrossRefGoogle Scholar
  47. 47.
    Djebaili K, Mekhalif Z, Boumaza A, Djelloul A (2015) J Spectrosc 2015:1Google Scholar
  48. 48.
    Melsheimer J, Guo W, Ziegler D, Wesemann M, Schlögl R (1991) Catal Lett 11:157CrossRefGoogle Scholar
  49. 49.
    Tahir M, Amin NS (2013) Appl Catal B 467:483–496CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CONACYT - Facultad de Ingeniería Civil-Departamento de Ecomateriales y EnergíaUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  2. 2.Facultad de Ingeniería Civil-Departamento de Ecomateriales y EnergíaUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico

Personalised recommendations