Topics in Catalysis

, Volume 61, Issue 15–17, pp 1537–1544 | Cite as

CO and CO2 Methanation Over Ni/SiC and Ni/SiO2 Catalysts

  • Thien An Le
  • Jong Kyu Kang
  • Eun Duck ParkEmail author
Original Paper


Ni/SiC and Ni/SiO2 catalysts prepared by both wet impregnation (WI) and deposition–precipitation (DP) methods were compared for CO and CO2 methanation. The prepared catalysts were characterized using N2 physisorption, temperature-programmed reduction with H2 (H2-TPR), H2 chemisorption, pulsed CO2 chemisorption, temperature-programmed desorption of CO2 (CO2-TPD), transmission electron microscopy, and X-ray diffraction. H2-TPR analysis revealed that the catalysts prepared by DP exhibit stronger interaction between the nickel oxides and support than those prepared by WI. The former catalysts exhibit higher Ni dispersions than the latter. The catalytic activities for both reactions over Ni/SiC and Ni/SiO2 catalysts prepared by WI increase on increasing the Ni content from 10 to 20 wt%. The Ni/SiC catalyst prepared by DP shows higher catalytic activity for CO and CO2 methanation than that of the Ni/SiC catalyst prepared by WI. Furthermore, it exhibits the highest catalytic activity for CO methanation among the tested catalysts. The high Ni dispersion achieved by the DP method and the high thermal conductivity enabled by SiC are beneficial for both CO and CO2 methanation.


CO methanation CO2 methanation Ni/SiC Ni/SiO2 Deposition–precipitation method 



This work was supported by the Human Resources Program in Energy Technology (No. 20154010200820) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), which is granted financial resources from the Ministry of Trade, Industry and Energy of the Republic of Korea. This work was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2017R1A2B3011316).

Supplementary material

11244_2018_965_MOESM1_ESM.docx (948 kb)
Supplementary material 1 (DOCX 947 KB)


  1. 1.
    Kopyscinski J, Schildhauer TJ, Biollaz SMA (2010) Fuel 89:1763–1783CrossRefGoogle Scholar
  2. 2.
    Ahrenfeldt J, Thomsen TP, Henriksen U, Clausen LR (2013) Appl Thermal Eng 50(2):1407–1417CrossRefGoogle Scholar
  3. 3.
    Götz M, Lefebvre J, Mörs F, Koch AM, Graf F, Bajohr S, Reimert R, Kolb T (2016) Renew Energy 85:1371–1390CrossRefGoogle Scholar
  4. 4.
    Rönsch S, Schneider J, Mathischke S, Schluter M, Gotz M, Lefebvre J, Prabhakaran P, Bajohr S (2016) Fuel 166:276–296CrossRefGoogle Scholar
  5. 5.
    Miao B, Ma SSK, Wang X, Su H, Chan SH (2016) Catal Sci Technol 6:4048–4058CrossRefGoogle Scholar
  6. 6.
    Gao J, Liu Q, Gu F, Liu B, Zhong Z, Su F (2015) RSC Adv 5:22759–22776CrossRefGoogle Scholar
  7. 7.
    Su X, Xu J, Liang B, Duan H, Hou B, Huang Y (2016) J Ener Chem 25(4):553–565CrossRefGoogle Scholar
  8. 8.
    Aziz MAA, Jalil AA, Triwahyono S, Ahmad A (2015) Green Chem 17:2647–2663CrossRefGoogle Scholar
  9. 9.
    Wang W, Wang S, Ma X, Gong J (2011) Chem Soc Rev 40:3703–3727CrossRefGoogle Scholar
  10. 10.
    Ban H, Li C, Zhang Y, Meng F, Zheng H, Li Z (2015) Rev Adv Sci Eng 4:126–135CrossRefGoogle Scholar
  11. 11.
    Shcherban ND (2017) J Ind Eng Chem 50:15–28CrossRefGoogle Scholar
  12. 12.
    Duong-Viet C, Ba H, El-Berrichi Z, Nhut JM, Ledoux MJ, Liu Y, Pham-Huu C (2016) New J Chem 40:4285–4299CrossRefGoogle Scholar
  13. 13.
    Ledoux MJ, Pham-Huu C (2001) CATTECH 5:226–246CrossRefGoogle Scholar
  14. 14.
    Nguyen P, Pham C (2011) Appl Catal A 391:443–454CrossRefGoogle Scholar
  15. 15.
    Liu Y, Ersen O, Meny C, Luck F, Pham-Huu C (2014) ChemSusChem 7(5):1218–1239CrossRefGoogle Scholar
  16. 16.
    Wang H, Schmack R, Paul B, Albrecht M, Sokolov S, Rummler S, Kondratenko EV, Kraehnert R (2017) Appl Catal A 537:33–39CrossRefGoogle Scholar
  17. 17.
    Hoffmann C, Plate P, Steinbrück A, Kaskel S (2015) Catal Sci Technol 5:4174–4183CrossRefGoogle Scholar
  18. 18.
    Kim AR, Lee HY, Lee DH, Kim BW, Chung CH, Moon DJ, Jang EJ, Pang C, Bae JW (2015) Energy Fuels 29:1055–1065CrossRefGoogle Scholar
  19. 19.
    Lakshmanan P, Kim MS, Park ED (2016) Appl Catal A 513:98–105CrossRefGoogle Scholar
  20. 20.
    Le TA, Kim TW, Lee SH, Park ED (2018) Catal Today 303:159–167CrossRefGoogle Scholar
  21. 21.
    Wu HC, Chang YC, Wu JH, Lin JH, Lin IK, Chen CS (2015) Catal Sci Technol 5:4154–4163CrossRefGoogle Scholar
  22. 22.
    Xu L, Wang F, Chen M, Zhang J, Yuan K, Wang L, Wu K, Xu G, Chen W (2016) RSC Adv 6:28489–28499CrossRefGoogle Scholar
  23. 23.
    Le TA, Kim MS, Lee SH, Kim TW, Park ED (2017) Catal Today 293:89–96CrossRefGoogle Scholar
  24. 24.
    Le TA, Kim TW, Lee SH, Park ED (2017) Korean J Chem Eng 34(12):3085–3091CrossRefGoogle Scholar
  25. 25.
    Zhang G, Sun T, Peng J, Wang S, Wang S (2013) Appl Catal A 462–463:75–81CrossRefGoogle Scholar
  26. 26.
    Jin G, Gu F, Liu Q, Wang X, Jia L, Xu G, Zhong Z, Su F (2016) RSC Adv 6:9631–9639CrossRefGoogle Scholar
  27. 27.
    Anmin Z, Weiyong Y, Haitao Z, Hongfang M, Dingye F (2012) J Nat Gas Chem 21:170–177CrossRefGoogle Scholar
  28. 28.
    Xiaopeng L, Fangna G, Qing L, Jiajian G, Lihua J, Guangwen X, Ziyi Z, Fabing S (2015) Ind Eng Chem Res 54:12516–12524CrossRefGoogle Scholar
  29. 29.
    Patterson A (1939) Phys Rev 56(10):978–982CrossRefGoogle Scholar
  30. 30.
    Thommes M, Kaneko K, Neimark AV, Olivier JP, Reinoso FR, Rouquerol J, Sing KSW (2015) Pure Appl Chem 87(9–10):1051–1069Google Scholar
  31. 31.
    Jesús MGV, José LV, Antonio de LC, Beatriz GM, Paula S, Fernando D (2012) Appl Catal A 431–432:49–56Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Department of Energy Systems ResearchAjou UniversitySuwonRepublic of Korea

Personalised recommendations