Hydrogen evolution in the photocatalytic reaction between methane and water in the presence of CO2 on titanate and titania supported Rh and Au catalysts

Original Paper
  • 25 Downloads

Abstract

The photocatalytic transformation of methane-water mixture over Rh and Au catalysts supported on protonated (H-form) titanate nanotube (TNT) was investigated. The role of the catalyst structure was analyzed using titania reference support. Furthermore the effect of carbon-dioxide addition was also investigated. The catalysts were characterized by high resolution transmission electron microscopy and X-ray photoelectron spectroscopy (XPS). Photocatalytic tests were performed with a mercury-arc UV source illuminating a continuous flow quartz reactor which was attached to a mass spectrometer. The surface of the catalysts was analyzed by diffuse reflectance infrared spectroscopy during the photoreactions. The changes of the catalysts due to photocatalytic usage were investigated by XPS and temperature programmed reduction methods as well. Most of the methane was generally transformed to hydrogen and ethane, and a small amount of methanol was also formed. The carbon dioxide addition enhanced the rate of the photocatalytic transformation of methane on Rh/TNT with increasing the lifetime of the electron–hole pairs. Bigger gold particles with mainly plasmonic character were more active in the reactions due to the photo induced activation of the adsorbed water. Surface carbon deposits were identified on the catalysts after the photoreactions. More oxidized carbon formed on the Au-containing catalysts than on the ones with Rh.

Graphical Abstract

Keywords

Heterogeneous photocatalysis Titanate nanotube Gold nanoparticle Molecular-like cluster Surface plasmon resonance 

Notes

Acknowledgements

The authors wish to thank Erika Varga for the XPS measurements, Zsuzsa Ferencz for the TPR measurements, László Nagy for the synthesis of the titanate nanotubes and Tamás Varga for the HRTEM measurements. Financial support of this work by the National Research Development and Innovation Office through grants GINOP-2.3.2-15-2016-00013 and NKFIH OTKA K120115 is gratefully acknowledged.

References

  1. 1.
    Lewis NS, Nocera DG (2006) Proc Natl Acad Sci 103:15729–15735CrossRefGoogle Scholar
  2. 2.
    Lior N (2008) Energy 33:842–857CrossRefGoogle Scholar
  3. 3.
    Fujishima A, Honda K (1972) Nature 238:37–38CrossRefGoogle Scholar
  4. 4.
    Yu J, Zhang L, Cheng B, Su Y (2007) J Phys Chem C 111:10582–10589CrossRefGoogle Scholar
  5. 5.
    Galindo C, Jacques P, Kalt A (2000) J Photochem Photobiol A 130:35–47CrossRefGoogle Scholar
  6. 6.
    Yu J, Zhang J (2010) Dalton Trans 39:5860–5867CrossRefGoogle Scholar
  7. 7.
    Kumar SG, Devi LG (2011) J Phys Chem A 115:13211–13241CrossRefGoogle Scholar
  8. 8.
    Kukovecz Á, Kordás K, Kiss J, Kónya Z (2016) Surf Sci Rep 71:473–546CrossRefGoogle Scholar
  9. 9.
    Kudo A, Miseki Y (2009) Chem Soc Rev 38:253–278CrossRefGoogle Scholar
  10. 10.
    Dosado AG, Chen W-T, Chan A, Sun-Waterhouse D, Waterhouse GIN (2015) J Catal 330:238–254CrossRefGoogle Scholar
  11. 11.
    Haryanto A, Fernando S, Murali N, Adhikari S (2005) Energy Fuels 19:2098–2106CrossRefGoogle Scholar
  12. 12.
    Armaroli N, Balzani V (2011) ChemSusChem 4:21–36CrossRefGoogle Scholar
  13. 13.
    Tahir M, Amin NS (2013) Renew Sustain Energy Rev 25:560–579CrossRefGoogle Scholar
  14. 14.
    Edwards JH, Maitra AM (1995) Fuel Process Technol 42:269–289CrossRefGoogle Scholar
  15. 15.
    Bradford MCJ, Vannice MA (1999) Catal Rev 41:1–42CrossRefGoogle Scholar
  16. 16.
    Erdőhelyi A, Cserényi J, Solymosi F (1993) J Catal 141:287–299CrossRefGoogle Scholar
  17. 17.
    Zhang Z, Tsipouriari VA, Efstathiou AM, Verykios XE (1996) J Catal 158:51–63CrossRefGoogle Scholar
  18. 18.
    Sarusi I, Fodor K, Baán K, Oszkó A, Pótári G, Erdőhelyi A (2011) Catal Today 171:132–139CrossRefGoogle Scholar
  19. 19.
    Papadopoulou C, Matrials H, Verykios XE (2012) In: Guczi L, Erdőhelyi A (eds) Catalysis for alternative energy generation, 1st edn. Springer, New YorkGoogle Scholar
  20. 20.
    Ferencz Z, Baán K, Oszkó A, Kónya Z, Kecskés T, Erdőhelyi A (2014) Catal Today 228:123–130CrossRefGoogle Scholar
  21. 21.
    Yuliati L, Itoh H, Yoshida H (2008) Chem Phys Lett 452:178–182CrossRefGoogle Scholar
  22. 22.
    Narayanan H, Viswanathan B, Yesodharan S (2016) Curr Catal 5:79–107CrossRefGoogle Scholar
  23. 23.
    Henderson MA (2012) Surf Sci Rep 66:185–297CrossRefGoogle Scholar
  24. 24.
    Ola O, Maroto-Valer MM (2015) J Photochem Photobiol C 24:16–42CrossRefGoogle Scholar
  25. 25.
    Lan Y, Lu Y, Ren Z (2013) Nano Energy 2:1031–1045CrossRefGoogle Scholar
  26. 26.
    Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK (2013) Angew Chem Int Ed 52:7372–7408CrossRefGoogle Scholar
  27. 27.
    Izumi Y (2013) Coord Chem Rev 257:171–186CrossRefGoogle Scholar
  28. 28.
    Halasi G, Gazsi A, Bánsági T, Solymosi F (2015) Appl Catal A 506:85–90CrossRefGoogle Scholar
  29. 29.
    Tahir M, Amin NS (2013) Energy Convers Manag 76:194–214CrossRefGoogle Scholar
  30. 30.
    Kasuga T, Hiramatsu M, Hoson A, Seiko T, Niihara K (1998) Langmuir 14:3160–3163CrossRefGoogle Scholar
  31. 31.
    Lee K, Mazare A, Schmuki P (2014) Chem Rev 114:9385–9454CrossRefGoogle Scholar
  32. 32.
    Kukovecz Á, Pótári G, Oszkó A, Kónya Z, Erdőhelyi A, Kiss J (2011) Surf Sci 605:1048–1055CrossRefGoogle Scholar
  33. 33.
    Bavykin DV, Friedrich JM, Walsh FC (2006) Adv Mater 18:2807–2824CrossRefGoogle Scholar
  34. 34.
    Sun X, Li Y (2003) Chem—Eur J 9:2229–2238Google Scholar
  35. 35.
    Tsubota S, Haruta M, Kobayashi T, Ueda A, Nakahara A (1991) In: Poncelet G et al (eds) Preparation of catalysts V, 1st edn. Elsevier, AmsterdamGoogle Scholar
  36. 36.
    Cesano F, Bertarione S, Uddin MJ, Agostini G, Scarano D, Zeccina A (2010) J Phys Chem C 114:169–178CrossRefGoogle Scholar
  37. 37.
    Madarász D, Pótári G, Sápi A, László B, Csudai C, Oszkó A, Kukovecz Á, Erdőhelyi A, Kónya Z, Kiss J (2013) Phys Chem Chem Phys 15:15917–15925CrossRefGoogle Scholar
  38. 38.
    Pótári G, Madarász D, Nagy L, László B, Sápi A, Oszkó A, Kukovecz Á, Erdőhelyi A, Kónya Z, Kiss J (2013) Langmuir 29:3061–3072CrossRefGoogle Scholar
  39. 39.
    Pusztai P, Puskás R, Varga E, Erdőhelyi A, Kukovecz Á, Kónya Z, Kiss J (2014) Phys Chem Chem Phys 16:26786–26797CrossRefGoogle Scholar
  40. 40.
    Haspel H, Laufer N, Bugris V, Ambrus R, Szabó-Révész P, Kukovecz Á (2012) J Phys Chem C 16:18999–19009CrossRefGoogle Scholar
  41. 41.
    Kordás K, Mohl M, Kónya Z, Kukovecz Á (2015) Transl Mater Res 2:015003CrossRefGoogle Scholar
  42. 42.
    Zhang Y, Jiang Z, Huang J, Lim LY, Li W, Deng J, Gong D, Tang Y, Lai Y, Chen Z (2015) RSC Adv 5:79479–79510CrossRefGoogle Scholar
  43. 43.
    Horváth E, Kukovecz Á, Kónya Z, Kiricsi I (2007) Chem Mater 19:927–931CrossRefGoogle Scholar
  44. 44.
    Bavykin DV, Carravetta M, Kulak AN, Walsh FC (2010) Chem Mat 22:2458–2465CrossRefGoogle Scholar
  45. 45.
    Linsebigler AL, Lu G, Yates JT Jr (1995) Chem Rev 95:735–758CrossRefGoogle Scholar
  46. 46.
    Li X, Liu H, Luo D, Li J, Huang Y, Li H, Fang Y, Xu Y, Zhu L (2012) Chem Eng J 180:151–158CrossRefGoogle Scholar
  47. 47.
    Parayil SK, Razzaq A, Park S-M, Kim HR, Grimes CA, In S-I (2015) Appl Catal A 498:205–213CrossRefGoogle Scholar
  48. 48.
    Qamar M, Kim SJ, Ganguli AK (2009) Nanotechnology 20:455703CrossRefGoogle Scholar
  49. 49.
    Peng S, Zeng X, Li Y (2015) Int J Hydrog Energy 40:6038–6049CrossRefGoogle Scholar
  50. 50.
    Zhao X, Cai Z, Wang T, O’Reilly SE, Liu W, Zhao D (2016) Appl Catal B 187:134–143CrossRefGoogle Scholar
  51. 51.
    Avouris P, Person BNJ (1984) J Phys Chem 88:837–848CrossRefGoogle Scholar
  52. 52.
    Ying ZC, Ho W (1991) J Chem Phys 94:5701CrossRefGoogle Scholar
  53. 53.
    Zhou X-L, Zhu X-Y, White JM (1991) Surf Sci Rep 13:73–220CrossRefGoogle Scholar
  54. 54.
    Kiss J, Lennon D, Jo SK, White JM (1991) J Phys Chem 95:8054–8059CrossRefGoogle Scholar
  55. 55.
    Jo SK, Zhu X-Y, Lennon D, White JM (1991) Surf Sci 241:231–243CrossRefGoogle Scholar
  56. 56.
    Wu M-C et al (2011) ACS Nano 5:5025–5030CrossRefGoogle Scholar
  57. 57.
    Subramanian V, Wolf EE, Kamat PV (2004) J Am Chem Soc 126:4943–4950CrossRefGoogle Scholar
  58. 58.
    Jacob M, Levanon H, Kamat PV (2003) Nano Lett 3:353–358CrossRefGoogle Scholar
  59. 59.
    Carp O, Huisman CL, Reller A (2004) Prog Solid State Chem 32:33–177CrossRefGoogle Scholar
  60. 60.
    Bowker M, Morton C, Bahruj H, Greves J, Jones W, Davis PR, Brookes C, Wells PP, Dimitratos N (2014) J Catal 310:10–15CrossRefGoogle Scholar
  61. 61.
    László B, Baán K, Varga E, Oszkó A, Erdőhelyi A, Kónya Z, Kiss J (2016) Appl Catal B 199:473–483CrossRefGoogle Scholar
  62. 62.
    Ioannides T, Verykios XE (1996) J Catal 161:560–569CrossRefGoogle Scholar
  63. 63.
    Zhang N, Liu S, Fu X, Xu Y-J (2011) J Phys Chem C 115:9136–9145CrossRefGoogle Scholar
  64. 64.
    Kowalska E, Mahaney OOP, Abe R, Ohtani B (2010) Phys Chem Chem Phys 12:2344–2355CrossRefGoogle Scholar
  65. 65.
    Park H, Park Y, Kim W, Choi W (2013) J Photochem Photobiol C 15:1–29CrossRefGoogle Scholar
  66. 66.
    Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Chem Rev 111:3669–3712CrossRefGoogle Scholar
  67. 67.
    Kiss J, Kis A, Solymosi F (2000) Surf Sci 454:273–279CrossRefGoogle Scholar
  68. 68.
    Kecskés T, Barthos R, Raskó J, Kiss J (2003) Vacuum 71:107–111CrossRefGoogle Scholar
  69. 69.
    Dimitrijevic NM, Vijayan BK, Pouektov OG, Rajh T, Gray KA, He H, Zapol P (2011) J Am Chem Soc 133:3964–3971CrossRefGoogle Scholar
  70. 70.
    Jovic V, Al-Azri ZHN, Chen W-T, Sun-Waterhouse D, Idriss H, Waterhouse GIN (2013) Top Catal 56:1139–1151CrossRefGoogle Scholar
  71. 71.
    Ying L, Gao X, Zhu H, Zheng Z, Yan T, Wu F, Ringer SP, Song D (2005) Adv Funct Mater 15:1310–1318CrossRefGoogle Scholar
  72. 72.
    Hernandez-Alonso MD, Gracia-Rodriguez S, Sánchez B, Coronado JM (2011) Nanoscale 3:2233–2240CrossRefGoogle Scholar
  73. 73.
    Bavykin DV, Lapkin AA, Plucinski PK, Torrente-Murciano L, Friedrich JM, Walsh FC (2006) Top Catal 39:151–160CrossRefGoogle Scholar
  74. 74.
    Li X, Yu J, Low J, Fang Y, Xiao J, Chen X (2015) J Mater Chem A 3:2485–2534CrossRefGoogle Scholar
  75. 75.
    Hisatomi T, Takanabe K, Domen K (2015) Catal Lett 145:95–108CrossRefGoogle Scholar
  76. 76.
    Kisch H (2010) Angew Chem Int Ed 49:9588–9589CrossRefGoogle Scholar
  77. 77.
    Serpone N (1997) J Photochem Photobiol A 104:1–12CrossRefGoogle Scholar
  78. 78.
    Henry CR (1998) Surf Sci Rep 31:231–325CrossRefGoogle Scholar
  79. 79.
    Sasahara A, Pang CL, Onishi H (2006) J Phys Chem B 110:17584–17588CrossRefGoogle Scholar
  80. 80.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668–677CrossRefGoogle Scholar
  81. 81.
    Chandrasekharan N, Kamat PV (2000) J Phys Chem B 104:10851–10857CrossRefGoogle Scholar
  82. 82.
    Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R (2008) J Am Chem Soc 130:5883–5885CrossRefGoogle Scholar
  83. 83.
    Baltrusaitis J, Schuttlefield J, Zeitler E, Grassian VH (2011) Chem Eng J 170:471–481CrossRefGoogle Scholar
  84. 84.
    Collins SE, Baltanás ME, Bonivardi AL (2004) J Catal 226:410–421CrossRefGoogle Scholar
  85. 85.
    Dobson KD, McQuillan AJ (1999) Spectrochim Acta Part A 55:1395–1405CrossRefGoogle Scholar
  86. 86.
    Tóth M, Varga E, Oszkó A, Baán K, Kiss J, Erdőhelyi A (2016) J Mol Catal A 411:377–387CrossRefGoogle Scholar
  87. 87.
    Dupin J-C, Gonbeau D, Vinatier P, Levasseur A (2000) Phys Chem Chem Phys 2:1319–1324CrossRefGoogle Scholar
  88. 88.
    Stobinski L, Lesiak B, Kövér L, Tóth J, Biniak S, Trykowski G, Judek J (2010) J Alloys Compd 501:77–84CrossRefGoogle Scholar
  89. 89.
    NIST X-ray Photoelectron Spectroscopy Database (2012) U.S. Secretary of Commerce. https://www.srdata.nist.gov/xps/. Accessed 13 June 2017
  90. 90.
    Lesiak B, Stobinski L, Malolepszy A, Mazurkiewicz M, Kövér L, Tóth J (2014) J Electron Spectrosc Relat Phenom 193:92–99CrossRefGoogle Scholar
  91. 91.
    Chandrasekharan N, Kamat PM (2000) J Phys Chem B 104:10851–10867CrossRefGoogle Scholar
  92. 92.
    Varghese OK, Paulose M, LaTempa TJ, Grimes CA (2009) Nano Lett 9:731–737CrossRefGoogle Scholar
  93. 93.
    Baltrusaitis J, Schuttlefield J, Zitler E, Grassian VH (2011) Chem Eng J 170:471–481CrossRefGoogle Scholar
  94. 94.
    Wu Z, Jiang D, Mann AKP, Mullins DR, Qiao Z, Allard LF, Zeng C, Jin R, Overbury SH (2014) J Am Chem Soc 136:6111–6122CrossRefGoogle Scholar
  95. 95.
    Turner VB, Golovko OPH, Yaughan P, Abdulkin A, Brenguer-Murcia MS, Tikhov BFG, Lambert RM (2008) Nature 454:981–983CrossRefGoogle Scholar
  96. 96.
    Yang MX, Jo SK, Paul A, Avila L, Bent BE, Nishikida K (1995) Surf Sci 325:102–120CrossRefGoogle Scholar
  97. 97.
    Burchan LJ, Wachs IE (1999) Catal Today 49:467–484CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Balázs László
    • 1
  • Kornélia Baán
    • 1
  • Albert Oszkó
    • 1
  • András Erdőhelyi
    • 1
  • János Kiss
    • 3
  • Zoltán Kónya
    • 2
    • 3
  1. 1.Department of Physical Chemistry and Materials ScienceUniversity of SzegedSzegedHungary
  2. 2.Department of Applied and Environmental ChemistryUniversity of SzegedSzegedHungary
  3. 3.MTA-SZTE Reaction Kinetics and Surface Chemistry Research GroupSzegedHungary

Personalised recommendations