Iodine Activation of Alcohols: A Computational Study

Original Paper

Abstract

A DFT study aimed at unravelling the origin of catalytic activity of iodine in reaction with alcohols is presented. Computed free energies for generation of the O–I complexes from the separated reactants are around 3 kcal/mol and solvation increases endoergicity by ca. 1 kcal/mol. Calculations suggest that halogen bond formation between I2 and alcohols does not lead to strong activation of the hydroxyl as a leaving group, although solvent has a notable effect in lowering endoergicity for carbocation formation. Model tertiary alcohols exhibited β-proton abstraction following breaking of the C–O bond, while model secondary and primary alcohols experienced an earlier β-proton abstraction, synchronic with the C–O bond cleavage. Consistent with computed natural bond orbital charges, benzylic and propargylic alcohols underwent iodide anion quenching at the para position of phenyl and C-3, respectively.

Graphical Abstract

Keywords

Catalysis by iodine Halogen bonding DFT calculations Activation of alcohols 

Notes

Acknowledgements

We thank the University of Florida for access to computational facilities at UF High-Performance Computing Center. Access to computational resources at Mendieta cluster from CCAD-UNC, which is part of SNCAD-MinCyT, Argentina, is also acknowledged. GLB acknowledges funding from CONICET and Secyt-UNC. S. S. acknowledges the Slovenian Research Agency (Programme P1-0134) for financial support and helpful discussions with Dr. Anton Kokalj (Jožef Stefan Institute).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11244_2018_918_MOESM1_ESM.docx (23 kb)
Supplementary material 1. Cartesian coordinates for optimized noncovalent complexes of alcohols with I2. (DOCX 23 KB)

References

  1. 1.
    Wu Y, Saho M, Feng Z, Gu X, Hong Y, Cui Q, Ren L, Wang S (2017) Asian J Org Chem 6:76–82CrossRefGoogle Scholar
  2. 2.
    Qiu Y-F, Ye Y-Y, Song X-R, Zhu X-Y, Yang F, Song B, Wang J, Hua H-L, He Y-T, Han Y-P, Liu X-Y, Liang Y-M (2015) Chem Eur J 21:3480–3487CrossRefGoogle Scholar
  3. 3.
    Guo J, Chen S, Liu J, Guo J, Chen W, Cai Q, Liu P, Sun P (2017) Eur J Org Chem 2017:4773–4777CrossRefGoogle Scholar
  4. 4.
    Chu C-M, Gao S, Sastry MNV, Yao C-F (2005) Tetrahedron Lett 46:4971–4974CrossRefGoogle Scholar
  5. 5.
    Cebular K, Stavber S (2017) Pure App Chem.  https://doi.org/10.1515/pac-2017-0414 Google Scholar
  6. 6.
    Maity P, Paroi B, Ranu BC (2017) Org Lett 19:5748–5751CrossRefGoogle Scholar
  7. 7.
    Wang S-K, Chen M-T, Zhao D-Y, You X, Luo Q-L (2016) Adv Synth Catal 358:4093–4099CrossRefGoogle Scholar
  8. 8.
    Tehri P, Aegurula B, Peddinti RK (2017) Tetrahedron Lett 58:2062–2065CrossRefGoogle Scholar
  9. 9.
    Gupta A, Deshmukh MS, Jain N (2017) J Org Chem 82:4784–4792CrossRefGoogle Scholar
  10. 10.
    Yang D, Sun P, Wei W, Meng L, He L, Fang B, Jiang W, Wang H (2016) Org Chem Front 3:1457–1461CrossRefGoogle Scholar
  11. 11.
    Wu S-S, Feng C-T, Hu D, Huang Y-K, Li Z, Luo Z-G, Ma S-T (2017) Org Biomol Chem 15:1680–1685CrossRefGoogle Scholar
  12. 12.
    Srihari P, Bhunia DC, Sreedhar P, Yadav JS (2008) Synlett 7:1045–1049CrossRefGoogle Scholar
  13. 13.
    Srihari P, Bhunia DC, Sreedhar P, Mandal SS, Reddy JSS, Yadav JS (2007) Tetrahedron Lett 48:8120–8124CrossRefGoogle Scholar
  14. 14.
    Stavber G, Zupan M, Stavber S (2006) Tetrahedron Lett 47:8463–8466CrossRefGoogle Scholar
  15. 15.
    Jereb M, Vražič D, Zupan M (2011) Tetrahedron 67:1355–1387CrossRefGoogle Scholar
  16. 16.
    Breugst M, Detmar E, von der Heiden D (2016) ACS Catal 6:3203–3212CrossRefGoogle Scholar
  17. 17.
    Breugst M, von der Heiden D (2018) Chem Eur J.  https://doi.org/10.1002/chem.201706136 Google Scholar
  18. 18.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2009) Gaussian 09, Revision E.01, Gaussian, Inc, Wallingford, CTGoogle Scholar
  19. 19.
    Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620CrossRefGoogle Scholar
  20. 20.
    Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113–11123CrossRefGoogle Scholar
  21. 21.
    Peterson KA, Shepler BC, Figgen D, Stoll H (2006) J Phys Chem A 110:13877–13883CrossRefGoogle Scholar
  22. 22.
    Cancès E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041CrossRefGoogle Scholar
  23. 23.
    Mennucci B, Tomasi J (1997) J Chem Phys 106:5151–5158CrossRefGoogle Scholar
  24. 24.
    Mennucci B, Cancès E, Tomasi J (1997) J Phys Chem B 101:10506–10517CrossRefGoogle Scholar
  25. 25.
    Tomasi J, Mennucci B, Cancès E (1999) J Mol Struct 464:211–226CrossRefGoogle Scholar
  26. 26.
    Glendening ED, Reed AE, Carpenter JE, Weinhold F (2009) NBO Version 3.1. Gaussian, Inc, Wallingford, CTGoogle Scholar
  27. 27.
    Jereb M, Vražič D (2017) Acta Chim Slov 64:747–762 and references thereinCrossRefGoogle Scholar
  28. 28.
    Toporek M, Michałowska-Kaczmarczyk AM, Michałowski T (2014) Am J Analyt Chem 5:1046–1056CrossRefGoogle Scholar
  29. 29.
    Sebők-Nagy K, Körtvélyesi T (2004) Int J Chem Kinetic 36:596–602CrossRefGoogle Scholar
  30. 30.
    von der Heiden D, Bozkus S, Klussmann M, Breugst M (2017) J Org Chem 82:4037–4043CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.INFIQC, Departamento de Química Teórica y Computacional, Facultad de Ciencias QuímicasCONICET and Universidad Nacional de CórdobaCórdobaArgentina
  2. 2.Department of Physical and Organic ChemistryJožef Stefan InstituteLjubljanaSlovenia
  3. 3.Department of ChemistryUniversity of North FloridaJacksonvilleUSA

Personalised recommendations