Topics in Catalysis

, Volume 61, Issue 3–4, pp 144–153 | Cite as

Solvent Free Synthesis of PdZn/TiO2 Catalysts for the Hydrogenation of CO2 to Methanol

  • Hasliza Bahruji
  • Jonathan Ruiz Esquius
  • Michael Bowker
  • Graham Hutchings
  • Robert D. Armstrong
  • Wilm Jones
Original Paper
  • 171 Downloads

Abstract

Catalytic upgrading of CO2 to value-added chemicals is an important challenge within the chemical sciences. Of particular interest are catalysts which are both active and selective for the hydrogenation of CO2 to methanol. PdZn alloy nanoparticles supported on TiO2 via a solvent-free chemical vapour impregnation method are shown to be effective for this reaction. This synthesis technique is shown to minimise surface contaminants, which are detrimental to catalyst activity. The effect of reductive heat treatments on both structural properties of PdZn/TiO2 catalysts and rates of catalytic CO2 hydrogenation are investigated. PdZn nanoparticles formed upon reduction showed high stability towards particle sintering at high reduction temperature with average diameter of 3–6 nm to give 1710 mmol kg−1 h of methanol. Reductive treatment at high temperature results in the formation of ZnTiO3 as well as PdZn, and gives the highest methanol yield.

Keywords

CO2 hydrogenation Methanol PdZn alloy Green methanol Hydrogen storage 

Notes

Acknowledgements

The authors would like to acknowledge UK Catalysis Hub and the EPSRC for research funding (EP/K014854/1, EP/I038748/1, EP/K014714/1 and EP/N010531/1).

References

  1. 1.
    Rockstrom J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475CrossRefGoogle Scholar
  2. 2.
    Olah GA (2005) Beyond oil and gas: the methanol economy. Angew Chem Int Ed 44:2636–2639CrossRefGoogle Scholar
  3. 3.
    Schlögl R (2010) The role of chemistry in the energy challenge. ChemSusChem 3:209–222CrossRefGoogle Scholar
  4. 4.
    Behrens M (2014) Heterogeneous catalysis of CO2 conversion to methanol on copper surfaces. Angew Chem Int Ed 53:12022–12024CrossRefGoogle Scholar
  5. 5.
    Aresta M, Dibenedetto A (2007) Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans 28:2975–2992Google Scholar
  6. 6.
    Prieto G, Zečević J, Friedrich H, de Jong KP, de Jongh PE (2013) Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat Mater 12:34–39CrossRefGoogle Scholar
  7. 7.
    Kasatkin I, Kurr P, Kniep B, Trunschke A, Schlögl R (2007) Role of lattice strain and defects in copper particles on the activity of Cu/ZnO/Al2O3 catalysts for methanol synthesis. Angew Chem 119:7465–7468CrossRefGoogle Scholar
  8. 8.
    Sun JT, Metcalfe IS, Sahibzada M (1999) Deactivation of Cu/ZnO/Al2O3 methanol synthesis catalyst by sintering. Ind Eng Chem Res 38:3868–3872CrossRefGoogle Scholar
  9. 9.
    Wu J, Saito M, Takeuchi M, Watanabe T (2001) The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO2-rich feed and from a CO-rich feed. Appl Catal A 218:235–240CrossRefGoogle Scholar
  10. 10.
    Conant T, Karim AM, Lebarbier V, Wang Y, Girgsdies F, Schlögl R, Datye A (2008) Stability of bimetallic Pd–Zn catalysts for the steam reforming of methanol. J Catal 257:64–70CrossRefGoogle Scholar
  11. 11.
    Bahruji H, Bowker M, Hutchings G, Dimitratos N, Wells P, Gibson E, Jones W, Brookes C, Morgan D, Lalev G (2016) Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. J Catal 343:133–146CrossRefGoogle Scholar
  12. 12.
    Martin O, Martín AJ, Mondelli C, Mitchell S, Segawa TF, Hauert R, Drouilly C, Curulla-Ferré D, Pérez-Ramírez J (2016) Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation. Angew Chem Int Ed 55:6261–6265CrossRefGoogle Scholar
  13. 13.
    Wei W, Jinlong G (2011) Methanation of carbon dioxide: an overview. Front Chem Sci Eng 5:2–10CrossRefGoogle Scholar
  14. 14.
    Kim Y, Trung TSB, Yang S, Kim S, Lee H (2016) Mechanism of the surface hydrogen induced conversion of CO2 to methanol at Cu(111) step sites. ACS Catal 6:1037–1044CrossRefGoogle Scholar
  15. 15.
    Fisher IA, Bell AT (1997) In-situ infrared study of methanol synthesis from H2/CO2 over Cu/SiO2 and Cu/ZrO2/SiO2. J Catal 172:222–237CrossRefGoogle Scholar
  16. 16.
    Tew MW, Emerich H, van Bokhoven JA (2011) Formation and characterization of PdZn alloy: a very selective catalyst for alkyne semihydrogenation. J Phys Chem C 115:8457–8465CrossRefGoogle Scholar
  17. 17.
    Arin J, Thongtem S, Phuruangrat A, Thongtem T (2017) Characterization of ZnO–TiO2 and zinc titanate nanoparticles synthesized by hydrothermal process. Res Chem Intermed 43:3183–3195CrossRefGoogle Scholar
  18. 18.
    van der Heide P (2011) Atoms, ions, and their electronic structure. In: X-ray photoelectron spectroscopy. Wiley, New York, pp 13–26CrossRefGoogle Scholar
  19. 19.
    Cocco F, Elsener B, Fantauzzi M, Atzei D, Rossi A (2016) Nanosized surface films on brass alloys by XPS and XAES. RSC Advances 6:31277–31289CrossRefGoogle Scholar
  20. 20.
    Moffitt CE, Wieliczka DM, Yasuda HK (2001) An XPS study of the elemental enrichment on aluminum alloy surfaces from chemical cleaning. Surf Coat Technol 137:188–196CrossRefGoogle Scholar
  21. 21.
    Erdem B, Hunsicker RA, Simmons GW, Sudol ED, Dimonie VL, El-Aasser MS (2001) XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir 17:2664–2669CrossRefGoogle Scholar
  22. 22.
    Bharti B, Kumar S, Lee H-N, Kumar R (2016) Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci Rep 6:32355CrossRefGoogle Scholar
  23. 23.
    Jing L, Xin B, Yuan F, Xue L, Wang B, Fu H (2006) Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships. J Phys Chem B 110:17860–17865CrossRefGoogle Scholar
  24. 24.
    Vempati S, Kayaci-Senirmak F, Ozgit-Akgun C, Biyikli N, Uyar T (2015) Surface ionic states and structure of titanate nanotubes. RSC Adv 5:82977–82982CrossRefGoogle Scholar
  25. 25.
    Lear T, Marshall R, Lopez-Sanchez JA, Jackson SD, Klapötke TM, Bäumer M, Rupprechter G, Freund H-J, Lennon D (2005) The application of infrared spectroscopy to probe the surface morphology of alumina-supported palladium catalysts. J Chem Phys 123:174706CrossRefGoogle Scholar
  26. 26.
    Dann EK, Gibson EK, Catlow RA, Collier P, Eralp Erden T, Gianolio D, Hardacre C, Kroner A, Raj A, Goguet A, Wells PP (2017) Combined in situ XAFS/DRIFTS studies of the evolution of nanoparticle structures from molecular precursors. Chem Mater 29(17):7515–7523CrossRefGoogle Scholar
  27. 27.
    Zhou H, Yang X, Li L, Liu X, Huang Y, Pan X, Wang A, Li J, Zhang T (2016) PdZn intermetallic nanostructure with Pd–Zn–Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene. ACS Catal 6:1054–1061CrossRefGoogle Scholar
  28. 28.
    Karim A, Conant T, Datye A (2006) The role of PdZn alloy formation and particle size on the selectivity for steam reforming of methanol. J Catal 243:420–427CrossRefGoogle Scholar
  29. 29.
    Park J-N, McFarland EW (2009) A highly dispersed Pd–Mg/SiO2 catalyst active for methanation of CO2. J Catal 266:92–97CrossRefGoogle Scholar
  30. 30.
    Stiles AB, Chen F, Harrison JB, Hu X, Storm DA, Yang HX (1991) Catalytic conversion of synthesis gas to methanol and other oxygenated products. Ind Eng Chem Res 30:811–821CrossRefGoogle Scholar
  31. 31.
    Makin EC, Okamoto KK (1980) Process for methanol production, in. Google PatentsGoogle Scholar
  32. 32.
    Bahruji H, Bowker M, Jones W, Hayward J, Ruiz Esquius J, Morgan DJ, Hutchings GJ (2017) PdZn catalysts for CO2 hydrogenation to methanol using chemical vapour impregnation (CVI). Faraday Discuss 197:309–324CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hasliza Bahruji
    • 1
  • Jonathan Ruiz Esquius
    • 1
  • Michael Bowker
    • 1
    • 2
  • Graham Hutchings
    • 1
  • Robert D. Armstrong
    • 1
  • Wilm Jones
    • 1
    • 2
  1. 1.School of Chemistry, Cardiff Catalysis InstituteCardiff UniversityCardiffUK
  2. 2.The UK Catalysis Hub, Research Complex at Harwell, HarwellOxonUK

Personalised recommendations