Advertisement

Redox reaction of N,N′-phenylenebis-(salicylideneiminato)iron(III) with hypophosphorous acid in mixed aqueous medium

  • I. IbrahimEmail author
  • S. O. Idris
  • I. Abdulkadir
  • A. D. Onu
Article
  • 2 Downloads

Abstract

The kinetics of redox reaction between N,N′-phenylenebis-(salicylideneiminato)iron(III), hereafter referred to as [FeSalphen]+, and hypophosphorous acid was studied in mixed aqueous medium (DMSO:H2O; 1:4 v/v) under pseudo-first-order conditions at 26 ± 1 °C, µ = 0.2 C2 mol dm−3 (NaCl) and λmax = 435 nm. The reaction was found to be first-order in both reactants second-order overall, acid independent and displayed zero Brønsted–Debye salt effect. Evidence for the presence of free radicals was obtained during the course of the reaction, but none to support the formation of an intermediate complex. In general, the data obtained suggest an outer-sphere mechanism for the reaction. A plausible mechanism is proposed.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Komiyama M, Takeda N, Shigekawa H (1999) Hydrolysis of DNA and RNA by lanthanide ions: mechanistic studies leading to new applications. Chem Commun 16:1443–1451CrossRefGoogle Scholar
  2. 2.
    Prema D, Wiznycia AV, Scott BMT, Hilborn J, Desper J, Levy CJ (2007) Dinuclear zinc(II) complexes of symmetric Schiff-base ligands with extended quinolone sidearms. Daltons Trans 42:4788–4796CrossRefGoogle Scholar
  3. 3.
    Woldemariam GA, Mandal SS (2008) Iron(III)-salen damages DNA and induces apoptosis in human cell via mitochondrial pathway. J Inorg Biochem 102:740–747CrossRefGoogle Scholar
  4. 4.
    Ansari KI, Grant JD, Woldemariam GA, Kasiri S, Mandal SS (2009) Iron(III)-salen complexes with less DNA cleavage activity exhibit more efficient apoptosis in MCF7 cells. Org Biomol Chem 7:926–932CrossRefGoogle Scholar
  5. 5.
    Ansari IK, Sahba K, James DG, Mandal SS (2011) Fe(III) salen and salphen complexes induce caspase activation and apoptosis in human cells. J Biomol Screen 16:26–35CrossRefGoogle Scholar
  6. 6.
    Czlapinski JL, Sheppard TL (2001) Nucleic acid template-directed assembly of metallosalen DNA conjugates. J Am Chem Soc 123:8618–8619CrossRefGoogle Scholar
  7. 7.
    Doctrow SR, Huffman K, Marcus CB, Tocco G, Malfroy E, Adinolfi CA et al (2002) Salen-manganese complexes as catalytic scavengers of hydrogen peroxide and cytoprotective agents: structure-activity relationship studies. J Med Chem 45:4549–4558CrossRefGoogle Scholar
  8. 8.
    Shrivastava HY, Devaraj SN, Nair BU (2004) A Schiff base complex of chromium(III): an efficient inhibitor for the pathogenic and invasive potential of Shigella dysenteriae. J Inorg Biochem 98:387–392CrossRefGoogle Scholar
  9. 9.
    Routier S, Vezin H, Lamour E, Bernier JL, Catteau JP, Bailly C (1999) DNA cleavage by hydroxy-salicylidene-ethylendiamine-iron complexes. Nucleic Acids Res 27:4160–4166CrossRefGoogle Scholar
  10. 10.
    Rokita SE, Burrows CJ (2001) Nickel- and cobalt-dependent oxidation and crosslinking of proteins. Met Ions Biol Syst 38:289–311PubMedGoogle Scholar
  11. 11.
    Cohen SM, Lippard SJ (2001) Cisplatin: from DNA damage to cancer chemotherapy. Prog Nucleic Acid Res Mol Biol 67:93–130CrossRefGoogle Scholar
  12. 12.
    Barnes KR, Lippard SJ (2004) Cisplatin and related anticancer drugs: recent advances and insights. Met Ions Biol Syst 42:143PubMedGoogle Scholar
  13. 13.
    Ott I, Gust R (2007) Non platinum metal complexes as anticancer drugs. Archiv der Pharmazie (Weinheim) 340(3):117–126CrossRefGoogle Scholar
  14. 14.
    Ibrahim I, Idris SO, Abdulkadir I, Onu AD (2019) Kinetics and mechanism of the redox reaction of N, N′-phenylenebis-(salicylideneiminato)iron(III) with oxalic acid in mixed aqueous medium. Transition Met Chem 44(3):269–273CrossRefGoogle Scholar
  15. 15.
    Mehrotra RN (2013) Three oxyacids of phosphorus: tautomerism and oxidation mechanism. Eur Chem Bull 2(10):758–776Google Scholar
  16. 16.
    Greenwood NN, Earnshaw A (1997) Chemistry of the Elements, 2nd ed. Butterworth Heinemann. pp 461–464. ISBN 0080379419Google Scholar
  17. 17.
    Mohammed Y, Idris SO, Onu AD (2017) Kinetics and mechanism of the reduction of diaquotetrakis-(2,2’-bipyridine)- µ-oxodiruthenium(III) ion by hypophosphorous acid in acidicmedium. Transition Met Chem 42:323–329CrossRefGoogle Scholar
  18. 18.
    Ayoko GA (1990) Oxidation of hypophosphorous and arsenious acids by 12-tungstocobaltate(III) ion in aqueous solution. Transition Met Chem 15:421–431CrossRefGoogle Scholar
  19. 19.
    Yusuf UF, Iyun JF, Ayoko GA (2004) Oxidation of hypophosphorous acid by poly(pyridine)iron(III) complexes. ChemClass J 2:118–122Google Scholar
  20. 20.
    Hamza SA, Iyun JF, Idris SO (2012) Kinetics and mechanism of the redox reaction of toluidine blue and nitrite ions in aqueous acidic medium. Arch Appl Sci Res 4(1):10–18Google Scholar
  21. 21.
    Idris SO, Tanimu A, Iyun JF, Mohammed Y (2015) Kinetics and mechanism of malachite green oxidation by hypochlorite ion in aqueous acidic medium. Am Chem Sci J 5(2):185–193CrossRefGoogle Scholar
  22. 22.
    Adetoro A, Iyun JF, Idris SO (2011) Kinetic approach to the mechanism of redox reaction of pyrocatechol violet and nitrite ion in aqueous hydrochloric acid. Res J Appl Sci Eng Technol 3(10):1159–1163Google Scholar
  23. 23.
    Atkins PW, de Paula J (2002) Physical chemistry, 7th edn. Oxford University Press, Oxford, p 962Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • I. Ibrahim
    • 1
    Email author
  • S. O. Idris
    • 1
  • I. Abdulkadir
    • 1
  • A. D. Onu
    • 2
  1. 1.Department of ChemistryAhmadu Bello UniversityZariaNigeria
  2. 2.Department of ChemistryFederal College of EducationZariaNigeria

Personalised recommendations