Synthesis, crystal structures and magnetic properties of nitronyl nitroxide radical-coordinated copper(II) complexes
- 7 Downloads
Abstract
The coordination compound constructed for nitronyl nitroxide radical NIT-Ph-4-Br and CuII(hfac)2(H2O)2 building blocks (NIT-Ph-4-Br = 2-(4-bromo-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, hfac = hexafluoroacetylacetonato) was successfully synthesized. The single-crystal X-ray diffraction analyses indicated that the complexes {(NIT-Ph-4-Br)2[Cu(hfac)2]3} have centrosymmetric five-spin structures consisting of three Cu(II) ions bridged by two nitroxide ligands and that they consist of two types of copper atoms, one with a heavily Jahn–Teller distorted (4 + 2) octahedral coordination (Cuoct) and hfac in trans-positions and the other with square pyramidal five-coordinated (Cupyr) with three hfac oxygen atoms and N–O oxygen atom at the base and the one hfac oxygen atom at the apex. Different geometries of the copper ions are quite important for magnetochemistry. The magnetic susceptibility study of the coordination compound shows strong antiferromagnetic interactions between the metal center and the organic radical.
Notes
Acknowledgment
This work was supported by (a) a Grant-in-Aid for Scientific Research (S) (No. 25220803) “Toward a New Class Magnetism by Chemically-controlled Chirality,” (b) a National Nature Science Foundation of China (No. 51762042), (c) Shaanxi Provincial Science and Technology Department Innovative Talent Promotion Plan Project of China (No. 2018KJXX-078) and (d) Doctoral Scientific Research Foundation of Yulin university (18GK24).
References
- 1.Itoh K, Kinoshita M (eds) (2000) Molecular magnetism, new magnetic materials. Gordon Breach-Kodansha, TokyoGoogle Scholar
- 2.Blundell SJ, Pratt FL (2004) J Phys: Condens Matter 16:R771–R828Google Scholar
- 3.Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. Oxford University Press, OxfordCrossRefGoogle Scholar
- 4.Sorace L, Benelli C, Gatteschi D (2011) Chem Soc Rev 40:3092–3104PubMedCrossRefPubMedCentralGoogle Scholar
- 5.Gutlich P, Garcia Y, Goodwin HA (2000) Chem Soc Rev 29:419–427CrossRefGoogle Scholar
- 6.Kurmoo M (2009) Chem Soc Rev 38:1353–1379PubMedCrossRefPubMedCentralGoogle Scholar
- 7.Demir S, Jeon IR, Long JR, Harris TD (2015) Coord Chem Rev 149:289–290Google Scholar
- 8.Ratera JV (2012) Chem Soc Rev 41:303–349PubMedCrossRefPubMedCentralGoogle Scholar
- 9.Brook DJR (2015) Comments Inorg Chem 35:1–17CrossRefGoogle Scholar
- 10.Preuss KE (2015) Coord Chem Rev 49:289–290Google Scholar
- 11.Morgan IS, Mansikkamäki A, Zissimou GA, Koutentis PA, Rouzières M, Clérac R, Tuononen HM (2015) Chem Eur J 21:15843–15851PubMedCrossRefPubMedCentralGoogle Scholar
- 12.Morgan IS, Peuronen A, Hänninen MM, Reed RW, Clérac R, Tuononen HM (2014) Inorg Chem 53:33–35PubMedCrossRefPubMedCentralGoogle Scholar
- 13.Fortier S, Le Roy JJ, Chen CH, Vieru V, Murugesu M, Chibotaru LF, Mindiola DJ, Caulton KG (2013) J Am Chem Soc 135:14670–14678PubMedCrossRefPubMedCentralGoogle Scholar
- 14.Miller JS (2011) Chem Soc Rev 40:3266–3296PubMedCrossRefPubMedCentralGoogle Scholar
- 15.Shultz DA, Miller JS, Drillon M (eds) (2002) Magnetism: molecules to materials II: molecule-based materials. Wiley-VCH, Weinheim, pp 281–304Google Scholar
- 16.Witt A, Heinemann FW, Khusniyarov MM (2015) Chem Sci 6:4599–4609PubMedPubMedCentralCrossRefGoogle Scholar
- 17.Occharenko V(2010) Stable radicals. Wiely, ch. 13Google Scholar
- 18.Miller JS, Drillon M (2003) Magnetism: Molecules to Materials II: Molecule-Based Materials, Wiely-VCH Verlag GmbH & Co, ch. 1Google Scholar
- 19.Mckinnon SDJ, Patrick BO, Lever ABP, Hicks RG (2013) Inorg Chem 52:8053–8066PubMedCrossRefPubMedCentralGoogle Scholar
- 20.Wu J, MacDonald DJ, Clérac R, Jeon IR, Jennings M, Lough AJ, Britten J, Robertson C, Dube PA, Preuss KE (2012) Inorg Chem 51:3827–3839PubMedCrossRefPubMedCentralGoogle Scholar
- 21.Kaszub W, Marino A, Lorenc M, Collet E, Bagryanskaya EG, Tretyakov EV, Ovcharenko VI, Fedin MV (2014) Angew Chem Int Ed 53:10636–10640CrossRefGoogle Scholar
- 22.Wang J, Li JN, Zhang SL, Zhao XH, Shao D, Wang XY (2016) Chem Commun 52:5033–5036CrossRefGoogle Scholar
- 23.Caneschi A, Gatteschi D, Sessoli R, Rey P (1989) Acc Chem Res 22:392–398CrossRefGoogle Scholar
- 24.Caneschi A, Gatteschi D, Rey P (1991) Prog Inorg Chem 39:331–334Google Scholar
- 25.Dickman MH, Doedens RJ (1981) Inorg Chem 20:2677–2681CrossRefGoogle Scholar
- 26.Porter LC, Ickmann MH, Doedens RJ (1983) Inorg Chem 22:1962–1964CrossRefGoogle Scholar
- 27.Porter LC, Doedens RJ (1985) Inorg Chem 24:1006–1010CrossRefGoogle Scholar
- 28.Lim YY, Drago RS (1972) Inorg Chem 11:1334–1338CrossRefGoogle Scholar
- 29.de Panthou FL, Belorizky E, Calemczuk R, Luneau D, Marcenat C, Ressouche E, Turek P, Rey P (1995) J Am Chem Soc 117:11247–11253CrossRefGoogle Scholar
- 30.Guedes GP, Zorzanelli RG, Comerlato NM, Speziali NL, Santos-Jr S, Vaz MGF (2012) Inorg Chem Commun 23:59–62CrossRefGoogle Scholar
- 31.Grand A, Rey P, Subra R (1983) Inorg Chem 22:391–394CrossRefGoogle Scholar
- 32.Caneschi A, Gatteschi D, Grand A, Laugier J, Pardi L, Rey P (1988) Inorg Chem 27:1031–1035CrossRefGoogle Scholar
- 33.Caneschi A, Gatteschi D, Laugier J, Rey P (1987) J Am Chem Soc 109:2191–2192CrossRefGoogle Scholar
- 34.Gatteschi D, Laugier J, Rey P, Zanchini C (1987) Inorg Chem 26:938–943CrossRefGoogle Scholar
- 35.Luneau D, Romero FM, Ziessel R (1998) Inorg Chem 37:5078–5087CrossRefGoogle Scholar
- 36.Porter LC, Dickman MH, Doedens RJ (1986) Inorg Chem 25:678–684CrossRefGoogle Scholar
- 37.Ullman FE, Osiecki JH, Boocock DGB, Darcy R (1972) J Am Chem Soc 94:7049–7059CrossRefGoogle Scholar
- 38.Hirel C, Vostrikova KE, Pécaut J, Ovcharenko VI, Rey P (2001) Chem Eur J 7:2007–2014PubMedCrossRefPubMedCentralGoogle Scholar
- 39.Boudreaux EA, Mulay LN (1976) Theory and application of molecular paramagnetism. Wiley, New YorkGoogle Scholar
- 40.Gordon AB, John FB (2008) J Chem Edu 85:532–536CrossRefGoogle Scholar
- 41.SAINT-Plus, version 6.02, Bruker Analytical X-ray System, Madison, WI (1999)Google Scholar
- 42.Sheldrick GM (1996) SADABS—an empirical absorption correction program; Bruker Analytical X-ray Systems, Madison, WIGoogle Scholar
- 43.Sheldrick GM (2015) SHELXTL refinement program version 2016/6. Acta Crystallogr Sect C 71:3–8CrossRefGoogle Scholar
- 44.Osanai K, Okazawa A, Nogami T, Ishida T (2006) J Am Chem Soc 128:14008–14009PubMedCrossRefPubMedCentralGoogle Scholar
- 45.Okazawa A, Nogami T, Ishida T (2007) Chem Mater 19:2733–2735CrossRefGoogle Scholar
- 46.Okazawa A, Nagaichi Y, Nogami T, Ishida T (2008) Inorg Chem 47:8859–8868PubMedCrossRefPubMedCentralGoogle Scholar
- 47.Okazawa A, Nogami T, Ishida T (2009) Polyhedron 28:1917–1921CrossRefGoogle Scholar
- 48.Jiang ZH, Yi Q, Liao DZ, Huan ZW, Yan SP, Wang GL, Yao XK, Wang RJ (1995) Trans Met Chem 20:136–137CrossRefGoogle Scholar
- 49.Caneschi A, Gatteschi D, Sessoli R, Hoffmann SK (1988) Inorg Chem 27:2390–2392CrossRefGoogle Scholar
- 50.Wang XL, Li YX, Yang SL, Zhang CX, Wang QL (2017) J Coord Chem 70:1–10CrossRefGoogle Scholar
- 51.Wang YL, Gao YY, Yang MF, Gao T, Ma Y, Wang QL, Liao DZ (2013) Polyhedron 61:105–111CrossRefGoogle Scholar
- 52.Caneschi A, Ferraro F, Gatteschi D, Rey P, Sessoli R (1991) Inorg Chem 30:3162–3166CrossRefGoogle Scholar
- 53.Fokin S, Ovcharenko V, Romanenko G, Ikorskii V (2004) Inorg Chem 43:969–977PubMedCrossRefPubMedCentralGoogle Scholar
- 54.Tretyakov E, Fokin S, Romanenko G, Ikorskii V, Vasilevsky S, Ovcharenko V (2006) Inorg Chem 45:3671–3678PubMedCrossRefPubMedCentralGoogle Scholar
- 55.Musin RN, Schastnev PV, Malinovskaya SA (1992) Inorg Chem 31:4118–4121CrossRefGoogle Scholar