Pseudohalide-directed assemblies of Cu(II) coordination polymers with diverse structures and dye adsorption behaviors

  • Cai-Ying Tian
  • Yan Bi
  • Jing ChenEmail author


Assembly of 3,4-bis(3-pyridyl)-5-(4-pyridyl)-1,2,4-triazole (L334) and CuBr2 without or with the presence of thiocyanate (SCN)/dicyanamide [dca, N(CN) 2 ] anion produces three Cu(II) coordination polymers, {[Cu(L334)(H2O)2](Br)2(CH3OH)}n (1), {[Cu(L334)(SCN)2(H2O)](H2O)(EA)}n (2) (EA = ethyl acetate), and [Cu(L334)(dca)2]n (3). The crystal structures for 1 and 3 show different 2D layered coordination networks, whereas that for 2 represents a distinct 1D coordination pattern. The above results demonstrate that the addition of pseudohalide anions plays an important role in structural construction of coordination architectures. Moreover, 1 exhibits the best adsorption capacity toward methyl orange (MO) dye.



This work is supported by the Program for Innovative Research Team in University of Tianjin (TD13-5074) and Tianjin Natural Science Foundation (17JCYBJC22800).

Supplementary material

11243_2019_361_MOESM1_ESM.doc (7.2 mb)
Supplementary material 1 (DOC 7402 kb)


  1. 1.
    Lv SW, Liu JM, Wang ZH, Ma H, Li CY, Zhao N, Wang S (2019) J Environ Sci 80:169–185CrossRefGoogle Scholar
  2. 2.
    Mudhoo A, Gautam RK, Ncibi MC, Zhao F, Garg VK, Sillanpää M (2019) Environ Chem Lett 17:157–193CrossRefGoogle Scholar
  3. 3.
    Li W, Mu B, Yang Y (2019) Bioresour Technol 277:157–170CrossRefGoogle Scholar
  4. 4.
    Lai KC, Lee LY, Hiew BYZ, Thangalazhy-Gopakumar S, Gan S (2019) J Environ Sci 79:174–199CrossRefGoogle Scholar
  5. 5.
    Han H, Rafiq MK, Zhou T, Xu R, Mašek O, Li X (2019) J Hazard Mater 369:780–796CrossRefGoogle Scholar
  6. 6.
    Du M, Chen M, Wang X, Wen J, Yang XG, Fang SM, Liu CS (2014) Inorg Chem 2014(53):7074–7076CrossRefGoogle Scholar
  7. 7.
    Jiao L, Wang Y, Jiang HL, Xu Q (2018) Adv Mater 30:1703663CrossRefGoogle Scholar
  8. 8.
    Shi D, Zheng R, Sun MJ, Cao X, Sun CX, Cui CJ, Liu CS, Zhao J, Du M (2017) Angew Chem Int Ed 56:14637–14641CrossRefGoogle Scholar
  9. 9.
    Wang XK, Liu J, Zhang L, Dong LZ, Li SL, Kan YH, Li DS, Lan YQ (2019) ACS Catal 9:1726–1732CrossRefGoogle Scholar
  10. 10.
    Jiang D, Chen M, Wang H, Zeng G, Huang D, Cheng M, Liu Y, Xue W, Wang Z (2019) Coord Chem Rev 380:471–483CrossRefGoogle Scholar
  11. 11.
    Chen M, Zhao H, Liu CS, Wang X, Shi HZ, Du M (2015) Chem Commun 51:6014–6017CrossRefGoogle Scholar
  12. 12.
    Zhao Y, Yang XG, Lu XM, Yang CD, Fan NN, Yang ZT, Wang LY, Ma LF (2019) Inorg Chem 58:6215–6221CrossRefGoogle Scholar
  13. 13.
    Zhang Y, Yuan S, Day G, Wang X, Yang X, Zhou HC (2018) Coord Chem Rev 354:28–45CrossRefGoogle Scholar
  14. 14.
    Wu YP, Tian JW, Liu S, Li B, Zhao J, Ma LF, Li DS, Lan YQ, Bu X (2019) Angew Chem Int Ed 58:12185–12189CrossRefGoogle Scholar
  15. 15.
    Liu Y, Hu B, Wu S, Wang M, Zhang Z, Cui B, He L, Du M (2019) Appl Catal B Environ 258:117970CrossRefGoogle Scholar
  16. 16.
    Wang H, Zhu QL, Zou R, Xu Q (2017) Chem 2:52–80CrossRefGoogle Scholar
  17. 17.
    Liu CS, Sun CX, Tian JY, Wang ZW, Ji HF, Song YP, Zhang S, Zhang ZH, He LH, Du M (2017) Biosens Bioelectron 91:804–810CrossRefGoogle Scholar
  18. 18.
    Zhou W, Huang DD, Wu YP, Zhao J, Wu T, Zhang J, Li DS, Sun C, Feng P, Bu X (2019) Angew Chem Int Ed 58:4227–4231CrossRefGoogle Scholar
  19. 19.
    Fu HR, Wang N, Qin JH, Han M, Ma LF, Wang F (2018) Chem Commun 54:11645–11648CrossRefGoogle Scholar
  20. 20.
    Chen DM, Tian JY, Wang ZW, Liu CS, Chen M, Du M (2017) Chem Commun 53:10668–10671CrossRefGoogle Scholar
  21. 21.
    Gamsey S WO 2009/009756 A2 20050630Google Scholar
  22. 22.
    Spek AL (2003) PLATON: a multipurpose crystallographic tool. Untrecht University, The NetherlandsGoogle Scholar
  23. 23.
    Sheldrick GM (1996) SADABS: siemens area detector absorption corrected software. University of Göttingen, GermanyGoogle Scholar
  24. 24.
    Bruker AXS (1998) SAINT software reference manual. Madison, WIGoogle Scholar
  25. 25.
    Sheldrick GM (1997) SHELXS-97: program for the solution of crystal structures. University of Göttingen, GermanyGoogle Scholar
  26. 26.
    Sheldrick GM (1997) SHELXL-97: program for the refinement of crystal structures. University of Göttingen, GermanyGoogle Scholar
  27. 27.
    Rajak R, Saraf M, Mohammad A, Mobin SM (2017) J Mater Chem A 5:17998–18011CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry, College of ChemistryTianjin Normal UniversityTianjinPeople’s Republic of China

Personalised recommendations