Coordination mode of cyclohex-1-enylolonium cation and bridging pyridyl derivatives as gem-diol chelates to rhenium(I) and (VII)

  • Gratien HabaruremaEmail author
  • Thomas Gerber
  • Theonille Mukabagorora
  • Eric Hosten
  • Jean Bernard Ndayambaje
  • Richard Betz


Rhenium(I) and (VII) complexes with cyclohex-1-enylolonium cation and bridging pyridyl derivatives are reported. Additionally, the CO-bridged pyridyl and their related compounds have shown interesting behaviour in their reactivity towards compounds containing two amino groups. The unusual cationic compound: (2,6-diaza-cyclohex-1-enylolonium)2-aza-benzoate (H2den), was isolated from the reaction mixture of 1,2-di(pyridin-2-yl)ethane-1,2-dione with propane-1,3-diamine in methanol. The latter ligand: H2den, was used in the synthesis of rhenium(I) complex in its reaction with [Re(CO)5Cl] that gave rise to novel rhenium(I) complex fac-[Re(CO)3(Hhdm)] (1). The surprising aspect in the formation of (1) is the modification of H2den which was stabilized into a coordinated six-membered pyrimidine ring, 1,4,5,6-tetrahydropyrimidin-2-yl)di(pyridin-2-yl)methanol (H2hdm) chelate. The derived ligand acts as a tridentate monoanionic N2,O-donor ligand towards the fac-[Re(CO)3]+ core. Surprisingly, the 2-aza-benzoate counter-ion that was present in the used ligand is not displayed in the crystal structure of complex 1, and might have been stabilized into 2-aza-benzoic acid (picolinic acid). The reaction of the potential tridentate N2,O-donor ligand 2,2′-dipyridylketone (dpk) with trans-[ReOI2(OEt)(PPh3)2] led to the isolation of [ReO3(dpk·OH)] (2). The ligand H2den and the rhenium complexes were spectroscopically characterized, and the structures of H2den, 1 and 2 were established by X-ray diffraction.



  1. 1.
    Huang S, Hsei I, Chen C (2006) Bioorg Med Chem 14:6106CrossRefGoogle Scholar
  2. 2.
    Soni B, Ranawat M, Sharma R, Bhandari A, Sharma S (2010) Eur J Med Chem 45:2938CrossRefGoogle Scholar
  3. 3.
    Hibi S, Okamoto Y, Tagami K, Numata H, Kobayashi N, Shinoda M, Kawahara T, Murakami M, Oketani K, Inoue T, Shibata H, Yamatsu I (1994) J Med Chem 37:3062CrossRefGoogle Scholar
  4. 4.
    Refaat HM, Khalil OM, Abuel-Maaty SM (2009) J Chem Res 7:448CrossRefGoogle Scholar
  5. 5.
    Satyendra RV, Vishnumurthy KA, Vagdevi HM, Rajesh KP, Manjunatha H, Shruthi A (2011) Eur J Med Chem 46:3078CrossRefGoogle Scholar
  6. 6.
    Bavin EM, Rees RJW, Robson JM, Seiler M, Seymour DE, Suddaby D (1950) J Pharm Pharmacol 2:764CrossRefGoogle Scholar
  7. 7.
    Liu S (2004) Chem Soc Rev 33:445CrossRefGoogle Scholar
  8. 8.
    Abram U, Alberto R (2006) J Braz Chem Soc 17:1486CrossRefGoogle Scholar
  9. 9.
    Bandoli G, Dolmella A, Gerber TIA, Luzipo D, du Preez JGH (2001) Inorg Chim Acta 325:215CrossRefGoogle Scholar
  10. 10.
    Bouziotis P, Papagiannopoulou D, Pirmettis I, Pelecanou M, Raptopoulou CP, Stassinopoulou CI, Terzis A, Friebe M, Spies H, Papadopoulos M, Chiotellis E (2001) Inorg Chim Acta 320:174CrossRefGoogle Scholar
  11. 11.
    Sugimoto H, Takahira T, Yoshimura T, Shiro M, Yamasaki M, Miyake H, Umakoshi K, Sasaki Y (2002) Inorg Chim Acta 337:203CrossRefGoogle Scholar
  12. 12.
    Machura B (2005) Coord Chem Rev 249:591CrossRefGoogle Scholar
  13. 13.
    Sartorelli AC, Booth BA (1967) Cancer Res 27:1614PubMedGoogle Scholar
  14. 14.
    Chen X, Femia FJ, Babich JW, Zubieta J (2000) Inorg Chim Acta 310:237CrossRefGoogle Scholar
  15. 15.
    Blower PJ, Prakash S (1999) In: Hay RW, Dilworth HR, Nolan KB (eds) Perspectives on bioinorganic chemistry, vol 4. JAI Press Inc., Stamford, p 91Google Scholar
  16. 16.
    Deutsch E, Libson K, Vanderheyden J-L, Ketring A, Maxon HR (1986) Nucl Med Biol 13:465Google Scholar
  17. 17.
    Joullie MM, Slusarczuk GMJ, Dey AS, Venuto PB, Yocum RH (1967) J Org Chem 32:4103CrossRefGoogle Scholar
  18. 18.
    Yumata NC, Habarurema G, Mukiza J, Gerber TIA, Hosten E, Taherkhani F, Nahali M (2013) Polyhedron 62:98CrossRefGoogle Scholar
  19. 19.
    Ciani G, Alfonso GD, Romiti P, Sironi A, Freni M (1983) Inorg Chim Acta 72:29CrossRefGoogle Scholar
  20. 20.
    Bain GA, Berry JF (2008) J Chem Educ 85:532CrossRefGoogle Scholar
  21. 21.
    Edwards P, Wilkinson G (1984) J Chem Soc Dalton Trans 10:2695CrossRefGoogle Scholar
  22. 22.
    Sheldrick GM (1997) SHELXL-97, Program for structure refinement. University of Göttingen, GöttingenGoogle Scholar
  23. 23.
    Uehara T, Jin Z, Ogawa K, Akizawa H, Hashimoto K, Nakayama M, Arano Y (2007) Nucl Med Biol 34:79CrossRefGoogle Scholar
  24. 24.
    Gerber TIA, Kemp HJ, du Preez JGH, Bandoli G, Dolmella A (1992) Inorg Chim Acta 202:191CrossRefGoogle Scholar
  25. 25.
    Pramanik AK, Jana MS, Kundu S, Mondal TK (2012) J Mol Struct 1017:22CrossRefGoogle Scholar
  26. 26.
    Edwards PG, Jokela J, Lehtonen A, Sillanpää R (1998) J Chem Soc Dalton Trans 19:3289Google Scholar
  27. 27.
    Trnka TM, Parkin G (1997) Polyhedron 16:1031CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Inorganic ChemistryNelson Mandela UniversityPort ElizabethSouth Africa
  2. 2.Department of ChemistryUniversity of Rwanda-College of Science and TechnologyKigaliRwanda
  3. 3.Department of Medical ImagingUniversity of Rwanda-College of Medicine and Health SciencesKigaliRwanda

Personalised recommendations