Advertisement

Kinetic and mechanistic analysis of oxidation of 2-furoic hydrazide by hexachloroirradate(IV) in a wide pH range

  • Haiping Yao
  • Hongwu Tian
  • Liyao Xu
  • Yanqing Xia
  • Li ZhouEmail author
  • Chunli LiuEmail author
  • Tiesheng ShiEmail author
Article
  • 12 Downloads

Abstract

Oxidation of 2-furoic hydrazide (FH) by hexachloroiridate(IV) ([IrCl6]2−) was studied kinetically in a wide pH range in aqueous solution of 1.0 M ionic strength. The oxidation reaction followed well-defined second-order kinetics: − d[IrCl62−]/dt = k′[FH]tot[IrCl62−], where [FH]tot denotes the total concentration of FH and k′ stands for the observed second-order rate constants. The established k′–pH profile displays that k′ increases drastically with pH and a plateau region exists between pH 4 and 6. A stoichiometric ratio of Δ[FH]tot/Δ[IrCl62−] = 1/4 was revealed by spectrophotometric titrations. 1H NMR spectroscopic studies indicated that FH was cleanly oxidized to 2-furoic acid. The kinetic data suggest a reaction mechanism in which all the three protolysis species of FH react with [IrCl6]2− in parallel, forming the rate-determining steps. Two stabilized hydrazyl radicals are generated in the rate-determining steps, in which a single electron is transferred to [IrCl6]2−. The two hydrazyl radicals react rapidly in consecutive steps requiring 3 mol of Ir(IV) to form 2-furoic acid as the final product. Rate constants of the rate-determining steps were deduced through a simulation of the rate expression to the k′–pH dependency data. Values of these rate constants demonstrate that the three protolysis species of FH have a huge reactivity span, changing by about 109 times toward reduction in [IrCl6]2− and that FH can be readily oxidized in neutral and basic media. Rapid scan spectra and the measured activation parameters suggest that an outer-sphere electron transfer is probably taking place in each of the rate-determining steps. This is the first kinetic study on the oxidation reactions of FH and provides concurrently the protolysis constants of FH (pKa1 = 3.04 ± 0.08 and pKa2 = 11.6 ± 0.1) at 25.0 °C and 1.0 M ionic strength.

Notes

Acknowledgements

Financial support of this work by a setup fund from Zaozhunag University (1020717) is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11243_2019_347_MOESM1_ESM.docx (3.5 mb)
Supplementary material 1 (DOCX 3549 kb)

References

  1. 1.
    Narang R, Narasimhan B, Sharma S (2012) Curr Med Chem 19:569–612CrossRefGoogle Scholar
  2. 2.
    Majumdar P, Pati A, Patra M, Behera RK, Behera AK (2014) Chem Rev 114:2942–2977CrossRefGoogle Scholar
  3. 3.
    Lever M, Walmsley TA, Visser RS, Ryde SJ (1984) Anal Biochem 139:2015–2211CrossRefGoogle Scholar
  4. 4.
    Dotsikas Y, Loukas YL (2003) J Am Soc Mass Spectrom 14:1123–1129CrossRefGoogle Scholar
  5. 5.
    Hwang SM, Kim MS, Lee M, Lim MH, Kim C (2017) New J Chem 41:15590–15600CrossRefGoogle Scholar
  6. 6.
    Fontes APS, Guerra W, Machado FC, de Almeida MV, Alves WA, da Costa Ferreira AM (2004) Transit Met Chem 29:382–387CrossRefGoogle Scholar
  7. 7.
    Silva PP, Guerra W, dos Santos GC, Fernandes NG, Silveira JN, da Costa Ferreira AM, Bortolotto T, Terenzi H, Bortoluzzi AJ, Neves A, Pereira-Maia EC (2014) J Inorg Biochem 132:67–76CrossRefGoogle Scholar
  8. 8.
    de Souza GD, Rodrigues MA, Silva PP, Pereira-Maia EC, Botelho FV, de Campos TA, de Faria Franca E, de Almeida KJ, Guerra W (2013) Croat Chem Acta 86:201–206CrossRefGoogle Scholar
  9. 9.
    Rodrigues MA, Marzano IM, Ribeiro GH, Colina-Vegas L, Pivatto M, Fontes APS, Ribeiro CM, Pavan FR, de Almeida KJ, Batista AA, Pereira-Maia EC, Guerra W (2015) Polyhedron 98:146–153CrossRefGoogle Scholar
  10. 10.
    Mahalingam V, Chitrapriya N, Zeller M, Natarajan K (2009) Polyhedron 28:1532–1540CrossRefGoogle Scholar
  11. 11.
    Vimalraj V, Vijayalakshmi S, Umayaparvathi S, Krishnan AR (2011) Spectrochim Acta A 78:670–675CrossRefGoogle Scholar
  12. 12.
    Pelizzetti E, Mentasti E, Baiocchi C (1976) J Phys Chem 80:2979–2982CrossRefGoogle Scholar
  13. 13.
    Pelizzetti E, Mentasti E, Pramauro E (1978) Inorg Chem 17:1181–1186CrossRefGoogle Scholar
  14. 14.
    Stanbury DM (1984) Inorg Chem 23:2879–2882CrossRefGoogle Scholar
  15. 15.
    Hubbard CD, Gerhard A, van Eldik R (2001) Dalton Trans 1069–1075Google Scholar
  16. 16.
    Bhattari N, Stanburry DM (2012) Inorg Chem 51:13303–13311CrossRefGoogle Scholar
  17. 17.
    Kim E, Winkler TE, Kitchen C, Kang M, Banis G, Bentley WE, Kelly DL, Ghodssi R, Payne GF (2017) Anal Chem 89:1583–1592CrossRefGoogle Scholar
  18. 18.
    Nan C, Dong J, Jiao X, Shi H, Duan J, Shi T (2017) Transt Met Chem 42:9–15CrossRefGoogle Scholar
  19. 19.
    Dong J, Ren Y, Sun S, Yang J, Nan C, Shi H, Xu J, Duan J, Shi T, Elding LI (2017) Dalton Trans 46:8377–8386CrossRefGoogle Scholar
  20. 20.
    Nan C, Dong J, Tian H, Shi H, Shen S, Xu J, Li X, Shi T (2018) J Mol Liq 256:489–496CrossRefGoogle Scholar
  21. 21.
    Kimura M, Yamamoto M, Yamabe S (1982) J Chem Soc Dalton Trans 423–427Google Scholar
  22. 22.
    Huo S, Dong J, Shen S, Ren Y, Song C, Xu J, Shi T (2014) Dalton Trans 43:15328–15336CrossRefGoogle Scholar
  23. 23.
    Dong J, Ren Y, Huo S, Shen S, Xu J, Tian H, Shi T (2016) Dalton Trans 45:11326–11337CrossRefGoogle Scholar
  24. 24.
    Liu C, Xu L, Tian H, Yao H, Elding LI, Shi T (2018) J Mol Liq 271:838–843CrossRefGoogle Scholar
  25. 25.
    Manoussakis G, Haristos D, Youri C (1973) Can J Chem 51:811–814CrossRefGoogle Scholar
  26. 26.
    Wengenack NL, Rusnak F (2001) Biochemistry 40:8990–8996CrossRefGoogle Scholar
  27. 27.
    Aitken SM, Quellet M, Percival MD, English AM (2003) Biochem J 375:613–621CrossRefGoogle Scholar
  28. 28.
    Khan SR, Morgan AGM, Michail K, Srivastava N, Whittal RM, Aljuhani N, Siraki AG (2016) Biochem Pharmacol 106:46–55CrossRefGoogle Scholar
  29. 29.
    Huo S, Shen S, Liu D, Shi T (2012) J Phys Chem B 116:6522–6528CrossRefGoogle Scholar
  30. 30.
    Huo S, Dong J, Song C, Xu J, Shen S, Ren Y, Shi T (2014) RSC Adv 4:7402–7409CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Chemistry and Environmental Science, the MOE Key Laboratory of Medicinal Chemistry and Molecular DiagnosticsHebei UniversityBaodingPeople’s Republic of China
  2. 2.College of Chemistry, Chemical Engineering, and Materials ScienceZaozhuang UniversityZaozhuangPeople’s Republic of China

Personalised recommendations