Advertisement

Synthesis, structures, and electrochemistry of diiron toluene-3,4-dithiolate complexes containing phosphine ligands

  • Hui-Min Lin
  • Chao Mu
  • Ao Li
  • Xu-Feng LiuEmail author
  • Yu-Long LiEmail author
  • Zhong-Qing Jiang
  • Hong-Ke Wu
Article
  • 18 Downloads

Abstract

In this paper, four diiron toluene-3,4-dithiolate complexes with phosphine ligands were synthesized and characterized. Treatment of complex [Fe2(CO)6{μ-SC6H3(CH3)S}] (1) with the corresponding phosphine ligands ethyl diphenylphosphinite, 4-(dimethylamino)phenyldiphenylphosphine, 2-(diphenylphosphino)biphenyl, or vinyldiphenylphosphine in the presence of Me3NO·2H2O as the CO-oxidative agent afforded the products [Fe2(CO)5(L){μ-SC6H3(CH3)S}] (L = Ph2POCH2CH3, 2; Ph2P(4-C6H4NMe2), 3; Ph2P(2-C6H4Ph), 4; Ph2PCH = CH2, 5) in 68–88% yields. The complexes 25 were characterized by elemental analysis, IR, NMR spectroscopy, as well as by X-ray diffraction analysis. Furthermore, the electrochemistry of these complexes was studied by cyclic voltammetry.

Notes

Acknowledgements

This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant LY19B020002, National Natural Science Foundation of China under Grant 21501124, Science and Technology Department of Sichuan Province under Grant 2018JY0235, and Education Department of Sichuan Province under Grant 18ZA0337.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Supplementary material

11243_2019_342_MOESM1_ESM.doc (1020 kb)
Supplementary material 1 (DOC 1019 kb)

References

  1. 1.
    Darensbourg MY, Lyon EJ, Smee JJ (2000) Coord Chem Rev 206–207:533CrossRefGoogle Scholar
  2. 2.
    Evans CJ, Pickett CJ (2003) Chem Soc Rev 32:268CrossRefGoogle Scholar
  3. 3.
    Tard C, Pickett CJ (2009) Chem Rev 109:2245CrossRefGoogle Scholar
  4. 4.
    Rauchfuss TB (2015) Acc Chem Res 48:2107CrossRefGoogle Scholar
  5. 5.
    Li Y, Rauchfuss TB (2016) Chem Rev 116:7043CrossRefGoogle Scholar
  6. 6.
    Adams MWW, Stiefel EI (1998) Science 282:1842CrossRefGoogle Scholar
  7. 7.
    Cammack R (1999) Nature 397:214CrossRefGoogle Scholar
  8. 8.
    Frey M (2002) ChemBioChem 3:153CrossRefGoogle Scholar
  9. 9.
    Sun L, Åkermark B, Ott S (2005) Coord Chem Rev 249:1653CrossRefGoogle Scholar
  10. 10.
    Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) Science 282:1853CrossRefGoogle Scholar
  11. 11.
    Nicolet Y, Piras C, Legrand P, Hatchikian CE, Fontecilla-Camps JC (1999) Structure 7:13CrossRefGoogle Scholar
  12. 12.
    Schmidt M, Contakes SM, Rauchfuss TB (1999) J Am Chem Soc 121:9736CrossRefGoogle Scholar
  13. 13.
    Lyon EJ, Georgakaki IP, Reibenspies JH, Darensbourg MY (2001) J Am Chem Soc 123:3268CrossRefGoogle Scholar
  14. 14.
    Zhao X, Georgakaki IP, Miller ML, Yarbrough JC, Darensbourg MY (2001) J Am Chem Soc 123:9710CrossRefGoogle Scholar
  15. 15.
    Lawrence JD, Rauchfuss TB, Wilson SR (2002) Inorg Chem 41:6193CrossRefGoogle Scholar
  16. 16.
    Gloaguen F, Lawrence JD, Rauchfuss TB, Bénard M, Rohmer MM (2002) Inorg Chem 41:6573CrossRefGoogle Scholar
  17. 17.
    Das P, Capon JF, Gloaguen F, Pétillon FY, Schollhammer P, Talarmin J (2004) Inorg Chem 43:8203CrossRefGoogle Scholar
  18. 18.
    Lyon EJ, Georgakaki IP, Reibenspies JH, Darensbourg MY (1999) Angew Chem Int Ed 38:3178CrossRefGoogle Scholar
  19. 19.
    Lawrence JD, Li H, Rauchfuss TB, Bénard M, Rohmer MM (2001) Angew Chem Int Ed 40:1768CrossRefGoogle Scholar
  20. 20.
    Lawrence JD, Li H, Rauchfuss TB (2001) Chem Commun 1482Google Scholar
  21. 21.
    Li H, Rauchfuss TB (2002) J Am Chem Soc 124:726CrossRefGoogle Scholar
  22. 22.
    Cloirec AL, Best SP, Borg S, Davies SC, Evans DJ, Hughes DL, Pickett CJ (1999) Chem Commun 2285Google Scholar
  23. 23.
    Adam FI, Hogarth G, Richards I, Sanchez BE (2007) Dalton Trans 2495Google Scholar
  24. 24.
    Gao W, Ekström J, Liu J, Chen C, Eriksson L, Weng L, Åkermark B, Sun L (2007) Inorg Chem 46:1981CrossRefGoogle Scholar
  25. 25.
    Ghosh S, Hogarth G, Hollingsworth N, Holt KB, Richards I, Richmond MG, Sanchez BE, Unwin D (2013) Dalton Trans 42:6775CrossRefGoogle Scholar
  26. 26.
    Boyke CA, Rauchfuss TB, Wilson SR, Rohmer MM, Bénard M (2004) J Am Chem Soc 126:15151CrossRefGoogle Scholar
  27. 27.
    Tard C, Liu X, Ibrahim SK, Bruschi M, De Gioia L, Davies SC, Yang X, Wang LS, Sawers G, Pickett CJ (2005) Nature 433:610CrossRefGoogle Scholar
  28. 28.
    Gloaguen F, Lawrence JD, Rauchfuss TB (2001) J Am Chem Soc 123:9476CrossRefGoogle Scholar
  29. 29.
    Mejia-Rodriguez R, Chong D, Reibenspies JH, Soriaga MP, Darensbourg MY (2004) J Am Chem Soc 126:12004CrossRefGoogle Scholar
  30. 30.
    Chong D, Georgakaki IP, Mejia-Rodriguez R, Sanabria-Chinchilla J, Soriaga MP, Darensbourg MY (2003) Dalton Trans 4158Google Scholar
  31. 31.
    Winter A, Zsolnai L, Huttner G (1982) Z Naturforsch 37b:1430CrossRefGoogle Scholar
  32. 32.
    Kaur-Ghumaan S, Sreenithya A, Sunoj RB (2015) J Chem Sci 127:557CrossRefGoogle Scholar
  33. 33.
    Liu XF (2017) J Coord Chem 70:3871CrossRefGoogle Scholar
  34. 34.
    APEX2 (2007) version 2009.7-0, Bruker AXS, Inc., Madison, WIGoogle Scholar
  35. 35.
    Sheldrick GM (2001) SADABS: Program for Absorption Correction of Area Detector Frames. Bruker AXS Inc., Madison, WIGoogle Scholar
  36. 36.
    Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Crystallogr 42:339CrossRefGoogle Scholar
  37. 37.
    Sheldrick GM (2008) Acta Cryst A 64:112CrossRefGoogle Scholar
  38. 38.
    Zhao PH, Li XH, Liu YF, Liu YQ (2014) J Coord Chem 67:766CrossRefGoogle Scholar
  39. 39.
    He J, Deng CL, Li Y, Li YL, Wu Y, Zou LK, Mu C, Luo Q, Xie B, Wei J, Hu JW, Zhao PH, Zheng W (2017) Organometallics 36:1322CrossRefGoogle Scholar
  40. 40.
    Li YL, He J, Wei J, Wei J, Mu C, Wu Y, Xie B, Zou LK, Wang Z, Wu ML, Li HM, Gao F, Zhao PH (2017) Polyhedron 137:325CrossRefGoogle Scholar
  41. 41.
    Zhao PH, Ma ZY, Hu MY, He J, Wang YZ, Jing XB, Chen HY, Wang Z, Li YL (2018) Organometallics 37:1280CrossRefGoogle Scholar
  42. 42.
    Ghosh S, Hogarth G, Hollingsworth N, Holt KB, Kabir SE, Sanchez BE (2014) Chem Commun 50:945CrossRefGoogle Scholar
  43. 43.
    Ezzaher S, Capon JF, Gloaguen F, Pétillon FY, Schollhammer P, Talarmin J (2009) Inorg Chem 48:2CrossRefGoogle Scholar
  44. 44.
    Li P, Wang M, He C, Li G, Liu X, Chen C, Åkermark B, Sun L (2005) Eur J Inorg Chem 2005:2506CrossRefGoogle Scholar
  45. 45.
    Lian M, He J, Yu XY, Mu C, Liu XF, Li YL, Jiang ZQ (2018) J Organomet Chem 870:90CrossRefGoogle Scholar
  46. 46.
    Chen FY, He J, Yu XY, Wang Z, Mu C, Liu XF, Li YL, Jiang ZQ, Wu HK (2018) Appl Organomet Chem 32:e4549CrossRefGoogle Scholar
  47. 47.
    Hasan MM, Hursthouse MB, Kabir SB, Malik KMA (2001) Polyhedron 20:97CrossRefGoogle Scholar
  48. 48.
    Li YL, Ma ZY, He J, Hu MY, Zhao PH (2017) J Organomet Chem 851:14CrossRefGoogle Scholar
  49. 49.
    Zhao PH, Hu MY, Li JR, Ma ZY, He J, Li YL, Liu XF (2019) Organometallics 38:385CrossRefGoogle Scholar
  50. 50.
    Niu SJ, Liu XF, Yu XY, Wu HK (2017) J Coord Chem 70:2202CrossRefGoogle Scholar
  51. 51.
    Song LC, Ge JH, Zhang XG, Liu Y, Hu QM (2006) Eur J Inorg Chem 2006:3204CrossRefGoogle Scholar
  52. 52.
    Song LC, Wang YX, Xing KK, Ding SD, Zhang LD, Wang XY, Zhang HY (2016) Chem Eur J 22:16304CrossRefGoogle Scholar
  53. 53.
    Vannucci AK, Wang S, Nichol GS, Lichtenberger DL, Evans DH, Glass RS (2010) Dalton Trans 39:3050CrossRefGoogle Scholar
  54. 54.
    Zaffaroni R, Rauchfuss TB, Gray DL, Gioia LD, Zampella G (2012) J Am Chem Soc 134:19260CrossRefGoogle Scholar
  55. 55.
    Liu XF, Xiao XW, Shen LJ (2001) Transit Met Chem 36:465CrossRefGoogle Scholar
  56. 56.
    Liu XF, Xiao XW (2001) J Organomet Chem 696:2767CrossRefGoogle Scholar
  57. 57.
    Li YL, Wu Y, Wei J, Wei J, Xie B, Zou LK, Cheng J, Wang Z, He J, Wu ML, Zhao PH (2017) Polyhedron 135:231CrossRefGoogle Scholar
  58. 58.
    Chen FY, He J, Mu C, Liu XF, Li YL, Jiang ZQ, Wu HK (2019) Polyhedron 160:74CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Materials and Chemical EngineeringNingbo University of TechnologyNingboChina
  2. 2.College of Chemistry and Environmental EngineeringSichuan University of Science and EngineeringZigongChina
  3. 3.Department of Physics, Key Laboratory of ATMMT Ministry of EducationZhejiang Sci-Tech UniversityHangzhouChina
  4. 4.College of Chemical EngineeringZhejiang University of TechnologyHangzhouChina

Personalised recommendations