Advertisement

Design, synthesis and in vitro bioactivity of mixed ligand Ru(II) complexes bearing the fluoroquinolone antibacterial agents

  • Ramadevi Pulipaka
  • Soumya R. Dash
  • Priyanka Khanvilkar
  • Sarmita S. Jana
  • Ranjitsinh V. Devkar
  • Debjani ChakrabortyEmail author
Article
  • 21 Downloads

Abstract

Mixed ligand Ru(II) phenanthroline complexes of the type [Ru(1,10-phen)2Flq]ClO4 (RPFlq-1-3) and “piano-stool”-type Ru(II) arene complexes [Ru(η6-p-cymene)Cl(Flq)] (RAFlq-1-3), where Flq = fluoroquinolone, have been synthesized, characterized and studied for their anticancer potential. DFT calculations were in line with the proposed structures, wherein the fluoroquinolones are coordinated to the metal through the ring carbonyl and one of the carboxylic oxygen atoms in a bidentate fashion. Binding efficacies of the synthesized complexes with bovine serum albumin (BSA) and CT-DNA were studied spectroscopically, and it has been established that the arene complexes, though have moderate binding propensities to CT-DNA (Kb = 0.8–1.7 × 103 M−1), have 102–103-fold better binding efficacies toward BSA (Ka = 3.2 × 105–2.1 × 106 M−1) due to the presence of the hydrophobic arene moiety. These results further prompted a study in their in vitro cytotoxicity assay on A-549 non-small cell lung cancer and MCF7 breast cancer cell lines. Furthermore, gene expression studies on BAX and BCL-2 genes and FACS analysis confirmed apoptosis as the mode of cell death.

Notes

Acknowledgements

The authors gratefully acknowledge the University Grants Commission RFSMS-BSR fellowship [UGC No. F.4-1/2006 (BSR)/5-68/2007 (BSR)], New Delhi, for financial assistance. The authors are thankful to the Head, Department of Chemistry and Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, for providing us with the necessary laboratory facilities and required instrumentation facilities to carry out the research work. The authors thank DBT-MSUB-ILSPARE project, Dr. Vikram Sarabhai Science Block, M. S. University of Baroda, for providing the ESI MS analysis of the complexes and FACS analysis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11243_2019_341_MOESM1_ESM.doc (2.1 mb)
Supplementary material 1 (DOC 2180 kb)

References

  1. 1.
    Allardyce CS, Dyson PJ (2001) Platinum Metals Rev. 45:62Google Scholar
  2. 2.
    Lentzen O, Moucheron C, Kirsch-De Mesmaeker A (2005) Metallotherapeutic drugs & metal-based diagnostic agents. Wiley, West Sussex, pp 359–378CrossRefGoogle Scholar
  3. 3.
    Schluga P (2006) Dalton Trans 14:1796CrossRefGoogle Scholar
  4. 4.
    Pongratz M, Schluga P, Jakupec M, Arion VB, Hartinger C, Allmaier G, Keppler BK (2004) J Anal At Spectrom 19:46CrossRefGoogle Scholar
  5. 5.
    Zanzi I, Srivastava SC, Meinken GE, Robeson W, Mausner LF, Fairchild RG, Margouleff D (1989) Nucl Med Biol 16:397Google Scholar
  6. 6.
    Srivastava SC (1996) Semin Nucl Med 26:119CrossRefGoogle Scholar
  7. 7.
    Zeng L, Gupta P, Chen Y, Wang E, Ji L, Chao H, Zhe-Sheng C (2017) Chem Soc Rev 46:5771CrossRefGoogle Scholar
  8. 8.
    Barcelo M, Garcia A, Terroon A, Molins E, Prieto MJ, Moreno V, Martinez J, Llado V, Lopez I, Gutierrez A, Escriba PV (2007) J Inorg Biochem 101:649CrossRefGoogle Scholar
  9. 9.
    Hartinger CG, Dyson PJ (2009) Chem Soc Rev 38:391CrossRefGoogle Scholar
  10. 10.
    Y.Yaw Kai, Chem. Comm. 2005, 38, 4764Google Scholar
  11. 11.
    Soni K (2012) Indo Glob J Pharm Sci 2:43Google Scholar
  12. 12.
    Ronald AR, Low DE (2003) Fluoroquinolone antibiotics. Birkhäuser, Basel, p 250CrossRefGoogle Scholar
  13. 13.
    Kwok Y, Sun D, Clement JJ, Hurley LH (1999) Anti-Cancer Drug Des 14:443Google Scholar
  14. 14.
    Yu H, Kwok Y, Hurley LH, Kerwin SM (2000) Biochemistry 39:10236CrossRefGoogle Scholar
  15. 15.
    Rinky S, Ravirajsinh NJ, Menaka CT, Ranjitsinh VD, Debjani C (2012) Transit Met Chem 37:541CrossRefGoogle Scholar
  16. 16.
    Ramadevi P, Rinky S, Sarmita SJ, Ranjitsinh VD, Debjani C (2017) J Organomet Chem 833:80CrossRefGoogle Scholar
  17. 17.
    Ramadevi P, Rinky S, Sarmita SJ, Ranjitsinh VD, Debjani C (2015) J Photochem Photobio AChem 305:1CrossRefGoogle Scholar
  18. 18.
    Sullivan BP, Salmon DJ, Meyer TJ (1978) Inorg Chem 17:3334CrossRefGoogle Scholar
  19. 19.
    Bennett MA, Smith AK (1974) J Chem Soc Dalton Trans (2):233Google Scholar
  20. 20.
    Bennett MA, Huang TN, Matheson TW, Smith AK (1983) Inorg Synth 21:74Google Scholar
  21. 21.
    Neese F (2012) Wiley Interdiscip Rev Comput Mol Sci 2:73CrossRefGoogle Scholar
  22. 22.
    Perdew JP (1986) Phys Rev B 33:8822CrossRefGoogle Scholar
  23. 23.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  24. 24.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  25. 25.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297CrossRefGoogle Scholar
  26. 26.
    Weigend F (2006) Phys Chem Chem Phys 8:1057CrossRefGoogle Scholar
  27. 27.
    Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123CrossRefGoogle Scholar
  28. 28.
    Vahtras O, Almlöf J, Feyereisen MW (1993) Chem Phys Lett 213:514CrossRefGoogle Scholar
  29. 29.
    Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669CrossRefGoogle Scholar
  30. 30.
    Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) J Cheminform 4:17CrossRefGoogle Scholar
  31. 31.
    Patel MN, Patel CR, Joshi HN, Thakor KP (2014) Spectrochim Acta, Part A 127:261CrossRefGoogle Scholar
  32. 32.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Plenum Press, New YorkCrossRefGoogle Scholar
  33. 33.
    Mosmann T (1983) J Immunol Methods 65:55CrossRefGoogle Scholar
  34. 34.
    Deacon GB, Phillips R (1980) J Coord Chem Rev 33:227CrossRefGoogle Scholar
  35. 35.
    Turel I (2002) Coord Chem Rev 232(1–2):27CrossRefGoogle Scholar
  36. 36.
    Ya-Wen T, Yun-Fan C, Yong-Jie L, Kuan-Hung C, Lin C-H, Jui-Hsien H (2018) Molecules 23:159CrossRefGoogle Scholar
  37. 37.
    Adebayo AA, Ajibade PA (2016) J Chem 2016:15, Article ID 3672062Google Scholar
  38. 38.
    Son G, Yeo J, Kim M, Kim S, Holmen A, Akerman B, Norden B (1998) J Am Chem Soc 120:6451CrossRefGoogle Scholar
  39. 39.
    Pyle AM, Rehmann JP, Meshoyrer R, Kumar CV, Turro NJ, Barton JK (1989) J Am Chem Soc 111:3051CrossRefGoogle Scholar
  40. 40.
    Zhao G, Lin H, Zhu S, Sun H, Chen Y (1998) J Inorg Biochem 70:219CrossRefGoogle Scholar
  41. 41.
    Dhar S, Nethaji M, Chakravarty AR (2005) J Inorg Biochem 99:805CrossRefGoogle Scholar
  42. 42.
    Pasternack RF, Cacca M, Keogh B, Stephenson TA, Williams AP, Gibbs FJ (1991) J Am Chem Soc 113:6835CrossRefGoogle Scholar
  43. 43.
    Lakowicz JR, Weber G (1973) Biochemistry 12:4161CrossRefGoogle Scholar
  44. 44.
    Satyanarayana S, Dabrowiak JC, Chaires JB (1993) Biochemistry 32:2573CrossRefGoogle Scholar
  45. 45.
    Kelly JM, Tossi AB, McConnell DJ (1985) Nucleic Acids Res 13:6017CrossRefGoogle Scholar
  46. 46.
    Suh D, Chaires JB (1995) Bioorg Med Chem 3:723CrossRefGoogle Scholar
  47. 47.
    Wang Y, Zhang H, Zhang G, Tao W, Tang S (2007) J Luminescence 126:211CrossRefGoogle Scholar
  48. 48.
    Ahmad B, Parveen S, Khan RH (2006) Biomacromolecules 7:1350CrossRefGoogle Scholar
  49. 49.
    Mishra B, Barik A, Priyadarsini KI, Mohan H (2005) J Chem Sci 117:641CrossRefGoogle Scholar
  50. 50.
    Petra H, Bock K, Atil B, Hoda MA, Korner W, Bartel C, Jungwirth U, Keppler BK, Michael M, Berger W, Gunda K (2010) J Biol Inorg Chem 15:737CrossRefGoogle Scholar
  51. 51.
    Tan C, Hu S, Liu J, Liangnian J (2011) Eur J Med Chem 46:1555CrossRefGoogle Scholar
  52. 52.
    Wee HA, Elisa D, Claudine S, Rosario S, Lucienne J, Dyson PJ (2006) Inorg Chem 45:9006CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryThe Maharaja Sayajirao University of BarodaVadodaraIndia
  2. 2.Department of ZoologyThe Maharaja Sayajirao University of BarodaVadodaraIndia

Personalised recommendations