Transition Metal Chemistry

, Volume 44, Issue 6, pp 545–553 | Cite as

A theoretical study of Fe(PMe3)4-catalyzed anti-Markovnikov addition of aromatics to alkenes to provide linear alkylation products

  • Hongping Zhang
  • Xueyan Zhu
  • Mian WangEmail author
  • Bu-Ming Liu
  • Yan Huang
  • Jianyi WangEmail author


The mechanisms and regioselectivities of Fe(0)-catalyzed alkylation of aromatic compounds with alkenes were explored by DFT calculations. Our calculations show that these systems tend to undergo anti-Markovnikov addition. The influence of steric effects on the reaction mechanism has been investigated. The results indicate that the reaction is more likely to provide the linear product with dissociation of the 1PMe3 ligand. The reductive elimination is the rate-determining step of the whole process, such that the electrostatic interactions of the reaction site and the steric hindrance of the trimethylsilyl groups are favorable for the anti-Markovnikov rather than the Markovnikov addition pathway. Our calculations provide insights into the regioselective origin of the alkylation of aromatic compounds mediated by Fe(PMe3)4.



This work was financially supported by Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards (201602), the Scientific Research Fund of Guangxi Education Department (2018KY0044) and the Scientific Research Fund of Guangxi University (XJZ170410). The computational resources are partly provided by Multifunction Computer Center of Guangxi University.

Supplementary material

11243_2019_338_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1135 kb)


  1. 1.
    Zheng QZ, Jiao N (2014) Transition-metal-catalyzed ketone directed ortho-C–H functionalization reactions. Tetrahedron Lett 55:1121–1126CrossRefGoogle Scholar
  2. 2.
    Rouquet G, Chatani N (2013) Catalytic functionalization of C(sp2)–H and C(sp3)–H bonds by using bidentate directing groups. Angew Chem Int Ed 52:11726–11743CrossRefGoogle Scholar
  3. 3.
    Colby DA, Tsai AS, Bergman RG, Ellman JA (2012) Rhodium catalyzed chelation-assisted C–H bond functionalization reactions. Acc Chem Res 45:814–825CrossRefGoogle Scholar
  4. 4.
    Liu WP, Cera G, Oliveira JCA, Shen ZG, Ackermann L (2017) MnCl2-catalyzed C–H alkylations with alkyl halides. Chem Eur J 23:11524–11528CrossRefGoogle Scholar
  5. 5.
    Sun CL, Li BJ, Shi ZJ (2010) Pd-catalyzed oxidative coupling with organometallic reagents via C–H activation. Chem Commun 46:677–685CrossRefGoogle Scholar
  6. 6.
    Jun CH, Mon CW, Hong JB, Lim SG, Chung KY, Kim YH (2002) Chelation-assisted RhI-catalyzed ortho-alkylation of aromatic ketimines or ketones with olefins. Chem Eur J 8:485–492CrossRefGoogle Scholar
  7. 7.
    Grellier M, Vendier L, Chaudret B, Albinati A, Rizzato S, Mason S, Sabo-Etienne S (2005) Synthesis, neutron structure, and reactivity of the bis(dihydrogen) complex RuH22-H2)2(PCyp3)2 stabilized by two tricyclopentylphosphines. J Am Chem Soc 127:17592–17593CrossRefGoogle Scholar
  8. 8.
    Tsuchikama K, Kasagawa M, Hashimoto YK, Endo K, Shibata T (2008) Cationic iridium-BINAP complex-catalyzed addition of aryl ketones to alkynes and alkenes via directed C–H bond cleavage. J Organomet Chem 693:3939–3942CrossRefGoogle Scholar
  9. 9.
    Crisenza GEM, McCreanor NG, Bower JF (2014) Branch-selective, Iridium-catalyzed hydroarylation of monosubstituted alkenes via a cooperative destabilization strategy. J Am Chem Soc 136:10258–10261CrossRefGoogle Scholar
  10. 10.
    Crisenza GEM, Sokolova OO, Bower JF (2015) Branch-selective alkene hydroarylation by cooperative destabilization: iridium-catalyzed ortho-alkylation of acetanilides. Angew Chem Int Ed 54:14866–14870CrossRefGoogle Scholar
  11. 11.
    Kimura N, Kochi T, Kakiuchi F (2017) Iron-catalyzed regioselective anti-markovnikov addition of C–H bonds in aromatic ketones to alkenes. J Am Chem Soc 139:14849–14852CrossRefGoogle Scholar
  12. 12.
    Zell D, Bursch M, Müller V, Grimme S, Ackermann L (2017) Full selectivity control in cobalt(III)-catalyzed C–H alkylations by switching of the C–H activation mechanism. Angew Chem Int Ed 56:10378–10382CrossRefGoogle Scholar
  13. 13.
    Zhang M, Huang GP (2016) Mechanism of iridium-catalysed branched-selective hydroarylation of vinyl ethers: a computational study. Dalton Trans 45:3552–3557CrossRefGoogle Scholar
  14. 14.
    Jiang YY, Li Z, Shi J (2012) Mechanistic origin of regioselectivity in nickel-catalyzed olefin hydroheteroarylation through C–H activation. Organometallics 31:4356–4366CrossRefGoogle Scholar
  15. 15.
    Frisch GWTMJ, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJ, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford CTGoogle Scholar
  16. 16.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  17. 17.
    Lee C, Yang WT, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRefGoogle Scholar
  18. 18.
    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–309CrossRefGoogle Scholar
  19. 19.
    Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G (1993) A set of f-polarization functions for pseudo-potential basis sets of the transition metals Sc–Cu, Y–Ag and La–Au. Chem Phys Lett 208:111–114CrossRefGoogle Scholar
  20. 20.
    Couty M, Hall MB (1996) Basis sets for transition metals: optimized outer p functions. J Comput Chem 17:1359–1370CrossRefGoogle Scholar
  21. 21.
    Fukui K (1981) The path of chemical reactions—the IRC approach. Acc Chem Res 14:363–368CrossRefGoogle Scholar
  22. 22.
    Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161CrossRefGoogle Scholar
  23. 23.
    Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926CrossRefGoogle Scholar
  24. 24.
    Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Medical CollegeGuangxi UniversityNanningChina
  2. 2.Guangxi Institute for Food and Drug ControlNanningChina
  3. 3.School of Chemistry and Chemical EngineeringGuangxi UniversityNanningChina
  4. 4.Guangxi Key Laboratory of Traditional Chinese Medicine Quality StandardsNanningChina

Personalised recommendations