Transition Metal Chemistry

, Volume 44, Issue 7, pp 655–662 | Cite as

Polyethyleneimine-stabilized palladium nanoparticles for reduction of 4-nitrophenol

  • Yanshuai Cui
  • Bo LiangEmail author
  • Jin Zhang
  • Ran Wang
  • Haotian Sun
  • Longgang Wang
  • Dawei GaoEmail author


Palladium nanoparticles (Pd NPs) have been drawing great interest as catalysts for water treatment. Herein, high molecular weight polyethyleneimine (PEI) (molecular weight: 70 kDa) was used as template to stabilize Pd NPs. PEI was incubated with disodium tetrachloropalladate, followed by reduction with sodium borohydride. Pd NPs had narrow size distribution with diameter from 3.64 to 6.20 nm. The PEI-stabilized palladium nanoparticles (Pdn-PEI NPs) showed excellent long-term stability and positive zeta potential in phosphate saline buffers with different pH values. In addition, Pdn-PEI NPs exhibited high efficiency for catalysis of 4-nitrophenol (4-NP) in aqueous solution. The catalytic reduction of 4-NP followed the pseudo-first-order behavior, which had the highest catalytic ability (knor = 229). The enhanced properties can be attributed to the high stability and smaller size of Pdn-PEI NPs in aqueous solution, resulting from the application of PEI template. This method can be used to prepare highly stable metal nanoparticles with potential applications in catalysis of polluted water in the future.

Graphical abstract



The authors appreciate financial support the National Nature Science Foundation of China (21476190 and 21776238), Hebei Province Science and Technology Support Project (No.142777118D), Hebei Province Higher Education Science and Technology Research Project (No. ZD2017084), the Key Basic Research Project in Hebei Province (No. 15961301D), Natural Science Foundation of Hebei Province (B2017203229), Youth Foundation Project supported by the Hebei Education Department of China (QN2015034), China Postdoctoral Science Foundation (2016M601284), and Postdoctoral Science Foundation of Hebei Province (B2016003017).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest in this work.

Supplementary material

11243_2019_330_MOESM1_ESM.docx (58 kb)
Supplementary material 1 (DOCX 59 kb)


  1. 1.
    Chiou J-R, Lai B-H, Hsu K-C, Chen D-H (2013) J Hazard Mater 248:249Google Scholar
  2. 2.
    Kora AJ, Rastogi L (2016) Ind Crop Prod 81:1CrossRefGoogle Scholar
  3. 3.
    Guo M, He J, Li Y, Ma S, Sun X (2016) J Hazard Mater 310:89CrossRefGoogle Scholar
  4. 4.
    Jungbluth G, Ruhling I, Ternes W (2000) J Chem Soc Perk T 2(2):1946CrossRefGoogle Scholar
  5. 5.
    Liu L, Gao F, Concepción P, Corma A (2017) J Catal 350:218CrossRefGoogle Scholar
  6. 6.
    Gong C, Dias MRS, Wessler GC, Taillon JA, Salamanca-Riba LG, Leite MS (2017) Adv Opt Mater 5:1600568CrossRefGoogle Scholar
  7. 7.
    Hanske C, Sanz-Ortiz MN, Liz-Marzán LM (2018) Adv Mater 30:1707003CrossRefGoogle Scholar
  8. 8.
    Ajay Piriya VS, Joseph P, Daniel SCG, Lakshmanan S, Kinoshita T, Muthusamy S (2017) Mat Sci Eng C-Mater 78:1231CrossRefGoogle Scholar
  9. 9.
    Su C, Zhao S, Wang P, Chang W, Chang K, Zhang H (2016) J Environ Chem Eng 4:3433CrossRefGoogle Scholar
  10. 10.
    Gregor L, Reilly AK, Dickstein TA, Mazhar S, Bram S, Morgan DG, Losovyj Y, Pink M, Stein BD, Matveeva VG, Bronstein LM (2018) ACS Omega 3:14717CrossRefGoogle Scholar
  11. 11.
    Wang M-L, Jiang T-T, Lu Y, Liu H-J, Chen Y (2013) J Mater Chem A 1:5923CrossRefGoogle Scholar
  12. 12.
    Levi N, Neumann R (2013) ACS Catalysis 3:1915CrossRefGoogle Scholar
  13. 13.
    Lin Y, Qiao Y, Wang Y, Yan Y, Huang J (2012) J Mater Chem 22:18314CrossRefGoogle Scholar
  14. 14.
    Li Y, Boone E, El-Sayed MA (2002) Langmuir 18:4921CrossRefGoogle Scholar
  15. 15.
    Ncube P, Hlabathe T, Meijboom R (2015) Appl Surf Sci 357:1141CrossRefGoogle Scholar
  16. 16.
    Nagao H, Ichiji M, Hirasawa I (2017) Chem Eng Technol 40:1242CrossRefGoogle Scholar
  17. 17.
    Esumi K, Isono R, Yoshimura T (2004) Langmuir 20:237CrossRefGoogle Scholar
  18. 18.
    Cui Y, Liang B, Wang L, Zhu L, Kang J, Sun H, Chen S (2018) Mater Sci Eng C 93:332CrossRefGoogle Scholar
  19. 19.
    Wang L, Yang Q, Cui Y, Gao D, Kang J, Sun H, Zhu L, Chen S (2017) New J Chem 41:8399CrossRefGoogle Scholar
  20. 20.
    Wu X, Lu C, Zhang W, Yuan G, Xiong R, Zhang X (2013) J Mater Chem A 1:8645CrossRefGoogle Scholar
  21. 21.
    She W, Luo K, Zhang C, Wang G, Geng Y, Li L, He B, Gu Z (2013) Biomaterials 34:1613CrossRefGoogle Scholar
  22. 22.
    Sun H, Chang M, Cheng W, Wang Q, Commisso A, Capeling M, Wu Y, Cheng C (2017) Acta Biomater 64:290CrossRefGoogle Scholar
  23. 23.
    Ma G, Lin W, Wang Z, Zhang J, Qian H, Xu L, Yuan Z, Chen S (2016) J Mater Chem B 4:5256CrossRefGoogle Scholar
  24. 24.
    Zhang J, Chen G, Guay D, Chaker M, Ma D (2014) Nanoscale 6:2125CrossRefGoogle Scholar
  25. 25.
    Shen W, Qu Y, Pei X, Li S, You S, Wang J, Zhang Z, Zhou J (2017) J Hazard Mater 321:299CrossRefGoogle Scholar
  26. 26.
    Gu S, Wunder S, Lu Y, Ballauff M, Fenger R, Rademann K, Jaquet B, Zaccone A (2014) J Phys Chem C 118:18618CrossRefGoogle Scholar
  27. 27.
    Dong Z, Le X, Dong C, Zhang W, Li X, Ma J (2015) Appl Catal B-Environ 162:372CrossRefGoogle Scholar
  28. 28.
    Gu X, Qi W, Xu X, Sun Z, Zhang L, Liu W, Pan X, Su D (2014) Nanoscale 6:6609CrossRefGoogle Scholar
  29. 29.
    Ndolomingo MJ, Meijboom R (2016) Appl. Catal. B-Environ 199:142CrossRefGoogle Scholar
  30. 30.
    Noh J-H, Meijboom R (2014) Appl Surf Sci 320:400CrossRefGoogle Scholar
  31. 31.
    Ncube P, Bingwa N, Baloyi H, Meijboom R (2015) Appl Catal A Gen 495:63CrossRefGoogle Scholar
  32. 32.
    Nemanashi M, Meijboom R (2016) Catal Commun 83:53CrossRefGoogle Scholar
  33. 33.
    Begum R, Farooqi ZH, Ahmed E, Naseem K, Ashraf S, Sharif A, Rehan R (2017) Appl Organomet Chem 31:e3563CrossRefGoogle Scholar
  34. 34.
    Begum R, Rehan R, Farooqi ZH, Butt Z, Ashraf S (2016) J Nanopart Res 18:231CrossRefGoogle Scholar
  35. 35.
    Wang Z, Xu C, Gao G, Li X (2014) RSC Adv 4:13644CrossRefGoogle Scholar
  36. 36.
    Halder A, Patra S, Viswanath B, Munichandraiah N, Ravishankar N (2011) Nanoscale 3:725CrossRefGoogle Scholar
  37. 37.
    Li H, Han L, Cooper-White J, Kim I (2012) Green Chem 14:586CrossRefGoogle Scholar
  38. 38.
    Fu G, Jiang X, Ding L, Tao L, Chen Y, Tang Y, Zhou Y, Wei S, Lin J, Lu T (2013) Appl Catal B-Environ 138:167CrossRefGoogle Scholar
  39. 39.
    Le X, Dong Z, Liu Y, Jin Z, Thanh-Do H, Minhdong L, Ma J (2014) J Mater Chem A 2:19696CrossRefGoogle Scholar
  40. 40.
    Zhao Z, Ma X, Wang X, Ma Y, Liu C, Hang H, Zhang Y, Du Y, Ye W (2018) Appl Surf Sci 457:1009CrossRefGoogle Scholar
  41. 41.
    Liu B, Yu S, Wang Q, Hu W, Jing P, Liu Y, Jia W, Liu Y, Liu L, Zhang J (2013) Chem Commun 49:3757CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoPeople’s Republic of China
  2. 2.College of Chemistry and Environmental EngineeringShanxi Datong UniversityDatongPeople’s Republic of China
  3. 3.Key Laboratory of Applied Chemistry, College of Environmental and Chemical EngineeringYanshan UniversityQinhuangdaoPeople’s Republic of China
  4. 4.Department of Chemical and Biological EngineeringUniversity at Buffalo, The State University of New YorkBuffaloUSA

Personalised recommendations