Syntheses, X-ray structures, electrochemical properties and biological evaluation of mono- and dinuclear N2O2-donor ligand-Fe systems

  • M. Venkata Nikhil Raj
  • Kishalay Bhar
  • Surbhi Jain
  • Monika Rana
  • Tanveer A. Khan
  • Anuj K. SharmaEmail author


The present work reports the synthesis, spectroscopic and structural characterizations of Fe(III) complexes of types [Fe(L)(H2O)(NCS)] (1), [Fe(L)(1-methylimidazole)2]ClO4 (2) and [(L)Fe(μ-O)Fe(L)]·3H2O·MeOH (3) containing a known planar N2O2-donor salphen Schiff base, H2L (N,N′-bis(3-methoxysalicylidene)phenylene-1,2-diamine). In mononuclear complexes 1 and 2, iron(III) centre adopts a distorted octahedral geometry where planar N2O2-donor L2− ligand forms equatorial plane and varied co-ligands (aqua and thiocyanate in 1 and 1-methylimidazole in 2) occupy the axial sites. The μ-oxo-bridged dinuclear complex 3 is a new solvatomorph of [(μ-O)(Fe(vanophen))2]·2H2O [vanophen = N,N′-bis(3-methoxysalicylidene)phenylene-1,2-diamine] reported by Jana et al. where a marked difference in Fe–O–Fe bond angle is noticed. The electrochemical behaviours of H2L and complexes 1–3 have been examined to ascertain the nature of electron transfer processes. The binding interactions of 1–3 with ct-DNA as well as with Bovine serum albumin (BSA) have been investigated using fluorescence spectroscopy in T10E1 buffer (pH = 7.8). All the complexes show good binding propensity with ct-DNA probably via partial intercalation mode. Furthermore, the complexes quench the intrinsic fluorescence of BSA by a static quenching mechanism.



AKS acknowledges Science and Engineering Research Board for financial support (grant ref.: EMR/2016/001452) and DST-INSPIRE research grant (IFA-13, CH-97). VNR is grateful to Central University of Rajasthan for University fellowship. SJ thanks DST-INSPIRE for SRF; MR is thankful to DST-SERB for fellowship; TAK is grateful to the UGC for SRF; KB is grateful to SERB for NPDF (PDF/2017/000929) fellowships. Authors acknowledge the instrumental facilities at Department of Chemistry, Central University of Rajasthan supported by DST-FIST (ref. no. SR/FST/CSI-257/2014 (C)). We are thankful to Department of Chemistry, IIT, Jodhpur and USIC, The University of Burdwan for X-ray crystallographic facilities. Paper is dedicated to the memories of Dr. Sunil G. Naik. The authors also acknowledge the Reviewers for their valuable suggestions in the revision stage.

Compliance with ethical standards

Conflicts of interest

There are no conflicts of interest to declare.

Supplementary material

11243_2019_322_MOESM1_ESM.docx (299 kb)
Supplementary material 1 (DOCX 298 kb)


  1. 1.
    Cozzolino M, Leo V, Tedesco C, Mazzeo M, Lamberti M (2018) Dalton Trans 47:13229–13238CrossRefGoogle Scholar
  2. 2.
    Karimpour T, Safaei E, Karimi B, Lee YI (2018) ChemCatChem 10:1889–1899CrossRefGoogle Scholar
  3. 3.
    Pathak C, Gupta SK, Gangwar MK, Prakasham AP, Ghosh P (2017) ACS Omega 2:4737–4750CrossRefGoogle Scholar
  4. 4.
    Chatterjee S, Sukul D, Banerjee P, Adhikary J (2018) Inorg Chim Acta 474:105–112CrossRefGoogle Scholar
  5. 5.
    Boonprab T, Harding P, Murray KS, Phonsri W, Telfer SG, Alkaş A, Ketkaew R, Tantirungrotechai Y, Jameson GN, Harding DJ (2018) Dalton Trans 47:12449–12458CrossRefGoogle Scholar
  6. 6.
    Mondal D, Majee MC, Kundu S, Mörtel M, Abbas G, Endo A, Khusniyarov MM, Chaudhury M (2018) Inorg Chem 57:1004–1016CrossRefGoogle Scholar
  7. 7.
    Wani WA, Baig U, Shreaz S, Shiekh RA, Iqbal PF, Jameel E, Ahmad A, Mohd-Setapar SH, Mushtaque M, Hun LT (2016) New J Chem 40:1063–1090CrossRefGoogle Scholar
  8. 8.
    Chanu SB, Banerjee S, Roy M (2017) Eur J Med Chem 125:816–824CrossRefGoogle Scholar
  9. 9.
    Zhang P, Sadler PJ (2017) Eur J Inorg Chem 2017:1541–1548CrossRefGoogle Scholar
  10. 10.
    Cozzi PG (2004) Chem Soc Rev 33:410–421CrossRefGoogle Scholar
  11. 11.
    Wang BW, Jiang L, Dong Z, Li BW, Shu SS, Gu W, Liu X, Tian JL (2014) J Coord Chem 67:2062–2075CrossRefGoogle Scholar
  12. 12.
    Ali A, Kamra M, Bhan A, Mandal SS, Bhattacharya S (2016) Dalton Trans 45:9345–9353CrossRefGoogle Scholar
  13. 13.
    Shahabadi N, Ghasemian Z, Hadidi S (2012) Bioinorg Chem Appl 2012:1–9Google Scholar
  14. 14.
    Martins NM, Anbu S, Mahmudov KT, Ravishankaran R, da Silva MF, Martins LM, Karande AA, Pombeiro AJ (2017) New J Chem 41:4076–4086CrossRefGoogle Scholar
  15. 15.
    Ghanbari Z, Housaindokht MR, Izadyar M, Bozorgmehr MR, Eshtiagh-Hosseini H, Bahrami AR, Matin MM, Khoshkholgh MJ (2014) Sci World J 2014:1–10Google Scholar
  16. 16.
    Lange TS, Kim KK, Singh RK, Strongin RM, McCourt CK, Brard L (2008) PLoS ONE 3:e2303CrossRefGoogle Scholar
  17. 17.
    Jana S, Chatterjee S, Chattopadhyay S (2012) Polyhedron 48:189–198CrossRefGoogle Scholar
  18. 18.
    Connelly NG, Geiger WE (1996) Chem Rev 96:877–910CrossRefGoogle Scholar
  19. 19.
    Sheldrick G (1998) SADABS v. 2.01, Bruker/Siemens area detector absorption correction program, Bruker AXS, Madison, Wisconsin, USAGoogle Scholar
  20. 20.
    Sheldrick GM (2015) Acta Crystallogr Sect A 71:3–8CrossRefGoogle Scholar
  21. 21.
    Sheldrick GM (2015) Acta Crystallogr Sect C 71:3–8CrossRefGoogle Scholar
  22. 22.
    Spek AL (2003) J Appl Crystallogr 36:7–13CrossRefGoogle Scholar
  23. 23.
    Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA, Puschmann H (2009) J Appl Crystallogr 42:339–341CrossRefGoogle Scholar
  24. 24.
    Dinsdale DR, Lough AJ, Lemaire MT (2015) Dalton Trans 44:11077–11082CrossRefGoogle Scholar
  25. 25.
    Badetti E, Gjoka B, Nagy EM, Bernardinelli G, Kündig PE, Zonta C, Licini G (2015) Eur J Inorg Chem 2015:3478–3484CrossRefGoogle Scholar
  26. 26.
    Palaniandavar M, Velusamy M, Mayilmurugan R (2006) J Chem Sci 118:601–610CrossRefGoogle Scholar
  27. 27.
    Strautmann JBH, Freiherr von Richtofen C-G, Heinze-Bruckner G, DeBeer S, Bothe E, Bill E, Weyhermuller T, Stammler A, Bogge H, Glaser T (2011) Inorg Chem 50:155–171CrossRefGoogle Scholar
  28. 28.
    Taylor RA, Bonanno NM, Mirza D, Lough AJ, Lemaire MT (2017) Polyhedron 131:34–39CrossRefGoogle Scholar
  29. 29.
    Sirirak J, Harding DJ, Harding P, Liu L, Telfer SG (2015) Aust J Chem 68:766–773CrossRefGoogle Scholar
  30. 30.
    Odhiambo RA, Muthakia GK, Kagwanja SM (2012) Transition Met Chem 37:431–437CrossRefGoogle Scholar
  31. 31.
    Nivorozhkin AL, Anxolabéhère-Mallart E, Mialane P, Davydov R, Guilhem J, Cesario M, Audière J-P, Girerd J-J, Styring S, Schussler L (1997) Inorg Chem 36:846–853CrossRefGoogle Scholar
  32. 32.
    Liu HK, Sadler PJ (2011) Acc Chem Res 44:349–359CrossRefGoogle Scholar
  33. 33.
    Vančo J, Šindelář Z, Dvořák Z, Trávníček Z (2015) J Inorg Biochem 142:92–100CrossRefGoogle Scholar
  34. 34.
    Biswas B, Mitra M, Pal A, Basu A, Rajalakshmi S, Mitra P, Aliaga-Alcalde N, Kumar GS, Nair BU, Ghosh R (2013) Indian J Chem 52A:1576–1583Google Scholar
  35. 35.
    Singh N, Pagariya D, Jain S, Naik S, Kishore N (2018) J Biomol Struct Dyn 36:2449–2462CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemistry, School of Chemical Sciences and PharmacyCentral University of RajasthanAjmer DistrictIndia

Personalised recommendations