Advertisement

Synthesis, DNA interaction and SOD-like activities of copper(II) complexes: investigation of their DNA-interaction mechanism

  • Chun-Lian Zhang
  • Dai-Hong Cai
  • Shi Chen
  • Wei Liu
  • Ya-Hong Xiong
  • Xue-Yi LeEmail author
Article
  • 49 Downloads

Abstract

Two water-soluble 6-(pyrazin-2-yl)-1,3,5-triazine-2,4-diamine (pzta)-based Cu(II) complexes, [Cu(pzta)(l-LysH)(H2O)](ClO4)2·H2O (1) and [Cu(pzta)(l-Phe)(H2O)]ClO4·0.75H2O (2), (l-LysH = protonated l-lysinate; l-Phe = l-phenylalaninate), were synthesized and characterized. X-ray crystallography analysis revealed that the coordination geometries around Cu(II) in both complexes can be described as a distorted square pyramid, in which the pzta (N,N) and amino acids (N,O) both act as bidentate chelating ligands. The binding properties of the complexes toward calf thymus DNA (CT-DNA) were studied by physico-chemical and spectroscopic methods, together with viscosity measurements, and isothermal titration calorimetry. Overall, these studies indicated that both complexes associate with DNA via a groove binding mode, driven mainly by hydrophobic interactions. This conclusion is further supported by molecular docking calculations. In addition, the DNA cleavage and SOD-like activities of the complexes were investigated. We found that the complexes can cleave plasmid DNA efficiently in the presence of ascorbate through an oxidative pathway and they also have favorable SOD-like activities.

Notes

Acknowledgements

We are grateful to the program of Guangdong Provincial Science & Technology (2017A020208038) for generous financial support.

Supplementary material

11243_2019_320_MOESM1_ESM.doc (186 kb)
Supplementary material 1 (DOC 186 kb)

References

  1. 1.
    Deo KL, Pages BJ, Ang DL, Gordon CP, Aldrich-Wright JR (2016) Int J Mol Sci 17:1818–1835CrossRefGoogle Scholar
  2. 2.
    Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C (2013) Chem Rev 114:815–862CrossRefGoogle Scholar
  3. 3.
    Mohanraj M, Ayyannan G, Raja G, Jayabalakrishnan C (2016) Mater Sci Eng, C 69:1297–1306CrossRefGoogle Scholar
  4. 4.
    Qi YY, Gan Q, Liu YJ, Xiong YH, Mao ZW, Le XY (2018) Eur J Med Chem 154:220–232CrossRefGoogle Scholar
  5. 5.
    Chen JW, Wang XY, Shao Y, Zhu JH, Zhu YG, Li YZ, Xu Q, Guo ZJ (2007) Inorg Chem 46:3306–3312CrossRefGoogle Scholar
  6. 6.
    Micskei K, Patonay T, Caglioti L, Palyi G (2010) Chem Biodivers 7:1660–1669CrossRefGoogle Scholar
  7. 7.
    Kirin SI, Dubon P, Weyhermüller T, Bill E, Metzler-Nolte N (2005) Inorg Chem 44:5405–5415CrossRefGoogle Scholar
  8. 8.
    Zhang CL, Zhang XM, Liu W, Chen S, Mao ZW, Le XY (2017) Appl Organomet Chem 32:e3994CrossRefGoogle Scholar
  9. 9.
    Daier VA, Rivière E, Mallet-Ladeira S, Moreno DM, Hureau C, Signorella SR (2016) J Inorg Biochem 163:162–175CrossRefGoogle Scholar
  10. 10.
    Siddiqi ZA, Sharma PK, Shahid M, Khalid M (2012) Anjuli, Siddique A, Kumar S. Eur J Med Chem 57:102–111CrossRefGoogle Scholar
  11. 11.
    Gan Q, Zhang CL, Wang BF, Xiong YH, Fu YL, Mao ZW, Le XY (2016) Rsc Adv 6:35952–35965CrossRefGoogle Scholar
  12. 12.
    Chitrapriya N, Shin JH, Hwang IH, Kim Y, Kim C, Kim SK (2015) Rsc Adv 5:68067–68075CrossRefGoogle Scholar
  13. 13.
    Bruijnincx PCA, Sadler PJ (2008) Curr Opin Chem Biol 12:197–206CrossRefGoogle Scholar
  14. 14.
    Zhao XF, Ouyang Y, Liu YZ, Su QJ, Tian H, Xie CZ, Xu JY (2014) New J Chem 38:955–965CrossRefGoogle Scholar
  15. 15.
    Erxleben A (2018) Coord Chem Rev 360:92–121CrossRefGoogle Scholar
  16. 16.
    Haris P, Mary V, Haridas M, Sudarsanakumar C (2015) J Chem Inf Model 55:2644–2656CrossRefGoogle Scholar
  17. 17.
    Turnbull WB, Daranas AH (2003) J Am Chem Soc 125:14859–14866CrossRefGoogle Scholar
  18. 18.
    Zhang XM, Ou ZB, Chen S, Xiong YH, Zhou XH, Liu HF, Le XY (2012) Chin J Inorg Chem 28:2667–2673Google Scholar
  19. 19.
    Shen F, Ou ZB, Liu YJ, Liu W, Wang BF, Mao ZW, Le XY (2017) Inorg Chim Acta 465:1–13CrossRefGoogle Scholar
  20. 20.
    Bera R, Sahoo BK, Ghosh KS, Dasgupta S (2008) Int J Biol Macromol 42:14–21CrossRefGoogle Scholar
  21. 21.
    Jana K, Maity T, Mahapatra TS, Das Mohapatra PK, Debnath SC, Das S, Hossain M, Samanta BC (2017) Transit Metal Chem 42:69–78CrossRefGoogle Scholar
  22. 22.
    Ahmad I, Ahmad M (2015) Int J Biol Macromol 79:193–200CrossRefGoogle Scholar
  23. 23.
    Andrasi M, Lehoczki G, Nagy Z, Gyemant G, Pungor A, Gaspar A (2015) Electrophoresis 36:1274–1281CrossRefGoogle Scholar
  24. 24.
    Pal A, Chaudhary S (2013) Thermochim Acta 573:200–205CrossRefGoogle Scholar
  25. 25.
    Thebo KH, Shad HA, Thebo AA, Raftery J (2014) J Crystallogr Rep 59:1063–1067CrossRefGoogle Scholar
  26. 26.
    İnci D, Aydın R, Vatan O, Sevgi D, Yılmaz D, Zorlu Y, Yerli Y, Çoşut B, Demirkan E, Çinkılıç N (2017) J Biol Inorg Chem 22:61–85CrossRefGoogle Scholar
  27. 27.
    Inci D, Aydın R, Vatan O, Yılmaz D, Genckal HM, Zorlu Y, Cavas T (2015) Spectrochim Acta A 145:313–324CrossRefGoogle Scholar
  28. 28.
    Lian WJ, Wang XT, Xie CZ, Tian H, Song XQ, Pan HT, Qiao X, Xu JY (2016) Dalton Trans 45:9073–9087CrossRefGoogle Scholar
  29. 29.
    Draksharapu A, Boersma AJ, Leising M, Meetsma A, Browne WR, Roelfes G (2015) Dalton Trans 44:3647–3655CrossRefGoogle Scholar
  30. 30.
    Sundaravadivel E, Kandaswamy M, Varghese B (2013) Polyhedron 61:33–44CrossRefGoogle Scholar
  31. 31.
    Arjmand F, Muddassir M, Yousuf I (2014) J Photoch Photobio B 136:62–71CrossRefGoogle Scholar
  32. 32.
    Haribabu J, Jeyalakshmi K, Arun Y, Bhuvanesh NSP, Perumal PT, Karvembu R (2015) Rsc Adv 5:46031–46049CrossRefGoogle Scholar
  33. 33.
    Rehman SU, Sarwar T, Husain MA, Ishqi HM, Tabish M (2015) Arch Biochem Biophys 576:49–60CrossRefGoogle Scholar
  34. 34.
    Holt PA, Chaires JB, Trent JO (2008) J Chem Inf Model 48:1602–1615CrossRefGoogle Scholar
  35. 35.
    Loganathan R, Ramakrishnan S, Ganeshpandian M, Bhuvanesh NSP, Palaniandavar M, Riyasdeen A, Akbarsha MA (2015) Dalton Trans 44:10210–10227CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Applied ChemistrySouth China Agricultural UniversityGuangzhouPeople’s Republic of China
  2. 2.College of Materials and EnergySouth China Agricultural UniversityGuangzhouPeople’s Republic of China

Personalised recommendations