Transition Metal Chemistry

, Volume 44, Issue 6, pp 555–564 | Cite as

Double-shell structural polyaniline-derived TiO2 hollow spheres for enhanced photocatalytic activity

  • Xuefeng Sun
  • Bin SunEmail author
  • Qinghua Gong
  • Tingting Gao
  • Guowei ZhouEmail author


Polyaniline (PANI) is a conducting polymer which has been employed as a photosensitizer for enhancing the performance of a number of photocatalysts. Herein, we describe the synthesis of organic–inorganic hybrid materials in order to enhance the photocatalytic activity of double-shell TiO2/PANI hollow spheres (TAHSs), which were fabricated by means of sol–gel and in situ polymerization processes. The physicochemical properties of the PANI-modified TiO2 hollow spheres were investigated by a variety of techniques. The effect of the PANI shell layer on the photocatalytic activity of TAHSs was elucidated. With the optimal PANI content, the resultant TiO2/PANI hybrid materials exhibited remarkably enhanced UV and visible light photocatalytic degradation of aqueous methyl orange, far exceeding the activity of bare TiO2 hollow spheres. The synergistic effect between TiO2 and PANI is explained in terms of the improved separation of photogenerated electron–hole pairs.



This work was supported by the National Natural Science Foundation of China (Grant Nos. 51572134, 51372124, 51503108) and the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province.

Supplementary material

11243_2019_312_MOESM1_ESM.doc (2.4 mb)
Supplementary material 1 (DOC 2416 kb)


  1. 1.
    Sun B, Zhou GW, Shao CW, Jiang B, Pang JL, Zhang Y (2014) Spherical mesoporous TiO2 fabricated by sodium dodecyl sulfate-assisted hydrothermal treatment and its photocatalytic decomposition of papermaking wastewater. Powder Technol 256:118–125CrossRefGoogle Scholar
  2. 2.
    Yang J, Jiang YL, Li LJ, Muhire E, Gao MZ (2016) High-performance photodetectors and enhanced photocatalysts of two-dimensional TiO2 nanosheets under UV light excitation. Nanoscale 8:8170–8177CrossRefGoogle Scholar
  3. 3.
    Li HL, Yu QJ, Huang YW, Yu CL, Li RZ, Wang JZ, Guo FY, Zhang Y, Zhang XT, Wang P, Zhao LC (2016) Ultralong rutile TiO2 nanowire arrays for highly efficient dye-sensitized solar cells. ACS Appl Mater Interfaces 8:13384–13391CrossRefGoogle Scholar
  4. 4.
    Perera SD, Mariano RG, Vu K, Nour N, Seitz O, Chabal Y Jr, Balkus KJ Jr (2012) Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal 2:949–956CrossRefGoogle Scholar
  5. 5.
    Jia CC, Yang P, Chen HS, Wang JP (2015) Template-free synthesis of mesoporous anatase titania hollow spheres and their enhanced photocatalysis. CrystEngComm 17:2940–2948CrossRefGoogle Scholar
  6. 6.
    Wang Y, Zheng YZ, Lu SQ, Tao X, Che Y, Chen JF (2015) Visible-light-responsive TiO2-coated ZnO: I nanorod array films with enhanced photoelectrochemical and photocatalytic performance. ACS Appl Mater Interfaces 7:6093–6101CrossRefGoogle Scholar
  7. 7.
    Sohn H, Kim SY, Shin WH, Lee JM, Lee H, Yun DJ, Moon KS, Han I, Kwak C, Hwang SJ (2018) Novel flexible transparent conductive films with enhanced chemical and electromechanical sustainability: TiO2 nanosheetAg nanowire hybrid. ACS Appl Mater Interfaces 10:2688–2700CrossRefGoogle Scholar
  8. 8.
    Talebi SMS, Kazeminezhad I, Motamedi H (2018) TiO2 hollow spheres as a novel antibiotic carrier for the direct delivery of gentamicin. Ceram Int 44:13457–13462CrossRefGoogle Scholar
  9. 9.
    Li J, Qin Y, Jin C, Li Y, Shi DL, Mende LS, Gan LH, Yang JH (2013) Highly ordered monolayer/bilayer TiO2 hollow sphere films with widely tunable visible–light reflection and absorption bands. Nanoscale 5:5009–5016CrossRefGoogle Scholar
  10. 10.
    Khojasteh H, Niasari MS, Sangsefidi FS (2018) Photocatalytic evaluation of RGO/TiO2NWs/Pd–Ag nanocomposite as an improved catalyst for efficient dye degradation. J Alloys Compd 746:611–618CrossRefGoogle Scholar
  11. 11.
    Hoseinzadeh T, Solaymani S, Kulesza S, Achour A, Ghorannevis Z, Talu S, Bramowicz M, Ghoranneviss M, Rezaee S, Boochani A, Mozaffari N (2018) Microstructures, fractal geometry and dye-sensitized solar cells performance of CdS/TiO2 nanostructures. J Electroanal Chem 830–831:80–87CrossRefGoogle Scholar
  12. 12.
    Dantan D, Gosavi SW, Chaure NB (2015) Studies on electrical properties of hybrid polymeric gate dielectric for field effect transistors. Macromol Symp 347:81–86CrossRefGoogle Scholar
  13. 13.
    Dastan D, Banpurkar A (2017) Solution processable sol–gel derived titania gate dielectric for organic field effect transistors. J Mater Sci Mater Electron 28:3851–3859CrossRefGoogle Scholar
  14. 14.
    Zhou J, Ren F, Zhang SF, Wu W, Xiao XH, Liu Y, Jiang CZ (2013) SiO2–Ag–SiO2–TiO2 multi-shell structures: plasmon enhanced photocatalysts with wide-spectral-response. J Mater Chem A 1:13128–13138CrossRefGoogle Scholar
  15. 15.
    Wang MG, Hu YM, Han J, Guo R, Xiong HX, Yin YD (2015) TiO2/NiO hybrid shells: p–n junction photocatalysts with enhanced activity under visible light. J Mater Chem A 3:20727–20735CrossRefGoogle Scholar
  16. 16.
    Hao RR, Wang GH, Tang H, Sun LL, Xu C, Han DY (2016) Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl Catal B 187:47–58CrossRefGoogle Scholar
  17. 17.
    Minella M, Bertaina F, Minero C (2018) The complex interplay between adsorption and photoactivity in hybrids rGO/TiO2. Catal Today 315:9–18CrossRefGoogle Scholar
  18. 18.
    Chen J, Wang N, Ma HY, Zhu JW, Feng JT, Yan W (2017) Facile modification of a polythiophene/TiO2 composite using surfactants in an aqueous medium for an enhanced Pb(II) adsorption and mechanism investigation. J Chem Eng Data 62:2208–2221CrossRefGoogle Scholar
  19. 19.
    Lin YM, Li DZ, Hu JH, Xiao GG, Wang JX, Li WJ, Fu XZ (2012) Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite. J Phys Chem C 116:5764–5772CrossRefGoogle Scholar
  20. 20.
    Chen X, Li HK, Wu HS, Wu YX, Shang YY, Pan J, Xiong X (2016) Fabrication of TiO2@PANI nanobelts with the enhanced absorption and photocatalytic performance under visible light. Mater Lett 172:52–55CrossRefGoogle Scholar
  21. 21.
    Razak S, Nawi MA, Haitham K (2014) Fabrication, characterization and application of a reusable immobilized TiO2–PANI photocatalyst plate for the removal of reactive red 4 dye. Appl Surf Sci 319:90–98CrossRefGoogle Scholar
  22. 22.
    Palmas S, Mascia M, Vacca A, Llanos J, Mena E (2014) Analysis of photocurrent and capacitance of TiO2 nanotube–polyaniline hybrid composites synthesized through electroreduction of an aryldiazonium salt. RSC Adv 4:23957–23965CrossRefGoogle Scholar
  23. 23.
    Youssef A (2014) Morphological studies of polyaniline nanocomposite based mesostructured TiO2 nanowires as conductive packaging materials. RSC Adv 4:6811–6820CrossRefGoogle Scholar
  24. 24.
    Zhang L, Chen L, Qi B, Yang GC, Gong J (2015) Synthesis of vertical aligned TiO2@polyaniline core–shell nanorods for high-performance supercapacitors. RSC Adv 5:1680–1683CrossRefGoogle Scholar
  25. 25.
    Xiang YQ, Li YY, Zhang XT, Zhou AN, Jing N, Xu QH (2017) Hybrid CuxO–TiO2 porous hollow nanospheres: preparation, characterization and photocatalytic properties. RSC Adv 7:31619–31627CrossRefGoogle Scholar
  26. 26.
    Deng YC, Tang L, Zeng GM, Dong HR, Yan M, Wang JJ, Hu W, Wang JJ, Zhou YY, Tang J (2016) Enhanced visible light photocatalytic performance of polyaniline modified mesoporous single crystal TiO2 microsphere. Appl Surf Sci 387:882–893CrossRefGoogle Scholar
  27. 27.
    Zare M, Solaymani S, Shafiekhani A, Kulesza S, Talu S, Bramowicz M (2018) Evolution of rough-surface geometry and crystalline structures of aligned TiO2 nanotubes for photoelectrochemical water splitting. Sci Rep 8:1–11CrossRefGoogle Scholar
  28. 28.
    Pouget JP, Jozefowicz ME, Epstein AJ, Tang X, Macdiarmid AG (1991) X-ray structure of polyaniline. Macromolecules 24:779–789CrossRefGoogle Scholar
  29. 29.
    Lai C, Zhang HZ, Li GR, Gao XP (2011) Mesoporous polyaniline/TiO2 microspheres with core–shell structure as anode materials for lithium ion battery. J Power Sources 196:4735–4740CrossRefGoogle Scholar
  30. 30.
    Terohid SAA, Heidari S, Jafari A, Aagary S (2018) Effect of growth time on structural, morphological and electrical properties of tungsten oxide nanowire. Appl Phys A 124:567(1)–567(9)CrossRefGoogle Scholar
  31. 31.
    Dastan D (2015) Nanostructured anatase titania thin films prepared by sol–gel dip coating technique. J At Mol Condens Nano Phys 2:109–114Google Scholar
  32. 32.
    Achour A, Chaker M, Achour H, Arman A, Islam M, Mardani M, Boujtita M, Brizoual LL, Djouadi MA, Brousse T (2017) Role of nitrogen doping at the surface of titanium nitride thin films towards capacitive charge storage enhancement. J Power Sources 359:349–354CrossRefGoogle Scholar
  33. 33.
    Wang ZM, Peng XY, Huang CY, Chen X, Dai WX, Fu XZ (2017) CO gas sensitivity and its oxidation over TiO2 modified by PANI under UV irradiation at room temperature. Appl Catal B 219:379–390CrossRefGoogle Scholar
  34. 34.
    Dastan D, Chaure N, Kartha M (2017) Surfactants assisted solvothermal derived titania nanoparticles: synthesis and simulation. J Mater Sci Mater Electron 28:7784–7796CrossRefGoogle Scholar
  35. 35.
    Dastan D, Panahi SL, Chaure NB (2016) Characterization of titania thin films grown by dip-coating technique. J Mater Sci Mater Electron 27:12291–12296CrossRefGoogle Scholar
  36. 36.
    Zhang LX, Liu P, Su ZX (2006) Preparation of PANI–TiO2 nanocomposites and their solid-phase photocatalytic degradation. Polym Degrad Stab 91:2213–2219CrossRefGoogle Scholar
  37. 37.
    Niu Z, Yang Z, Hu Z, Lu Y, Han CC (2003) Polyaniline–silica composite conductive capsules and hollow spheres. Adv Funct Mater 13:949–954CrossRefGoogle Scholar
  38. 38.
    Dastan D (2017) Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol–gel. Appl Phys A 123:699(1)–699(13)CrossRefGoogle Scholar
  39. 39.
    Kim BS, Lee KT, Huh PH, Lee DH, Jo NJ, Lee JO (2009) In situ template polymerization of aniline on the surface of negatively charged TiO2 nanoparticles. Synth Met 159:1369–1372CrossRefGoogle Scholar
  40. 40.
    Liao GZ, Chen S, Quan X, Zhang YB, Zhao HM (2011) Remarkable improvement of visible light photocatalysis with PANI modified core–shell mesoporous TiO2 microspheres. Appl Catal B 102:126–131CrossRefGoogle Scholar
  41. 41.
    Chen M, Wang M, Yang ZY, Wang XD (2017) High performance and durability of order-structured cathode catalyst layer based on TiO2@PANI core-shell nanowire arrays. Appl Surf Sci 406:69–76CrossRefGoogle Scholar
  42. 42.
    Wen T, Fan QH, Tan XL, Chen YT, Chen CL, Xu AW, Wang XK (2016) A core–shell structure of polyaniline coated protonic titanate nanobelt composites for both Cr(VI) and humic acid removal. Polym Chem 7:785–794CrossRefGoogle Scholar
  43. 43.
    Guo N, Liang YM, Lan S, Liu L, Zhang JJ, Ji GJ, Gan SC (2014) Microscale hierarchical three-dimensional flowerlike TiO2/PANI composite: synthesis, characterization, and its remarkable photocatalytic activity on organic dyes under UV-light and sunlight irradiation. J Phys Chem C 118:18343–18355CrossRefGoogle Scholar
  44. 44.
    Alavi A, Jafari A, Heidary S, Fayaz V, Terohid SAA (2018) Effect of laser pulse energy on the structure, morphology and optical properties of tantalum-oxide nanoparticles generated by laser ablation. J Nanoelectron Optoelectron 13:1407–1412CrossRefGoogle Scholar
  45. 45.
    Dastan D, Panahi SL, Yengntiwar AP, Banpurkar AG (2016) Morphological and electrical studies of titania powder and films grown by aqueous solution method. Adv Sci Lett 22:950–953CrossRefGoogle Scholar
  46. 46.
    Korpi ARG, Luna C, Arman A, Talu S (2017) Influence of the oxygen partial pressure on the growth and optical properties of RF-sputtered anatase TiO2 thin films. Results Phys 7:3349–3352CrossRefGoogle Scholar
  47. 47.
    Ansari MO, Khan MM, Ansari SA, Raju K, Lee J, Cho MH (2014) Enhanced thermal stability under DC electrical conductivity retention and visible light activity of Ag/TiO2@polyaniline nanocomposite film. ACS Appl Mater Interfaces 6:8124–8133CrossRefGoogle Scholar
  48. 48.
    Radoicic M, Saponjic Z, Jankovic IA, Marjanovic GC, Ahrenkielc SP, Comor MI (2013) Improvements to the photocatalytic efficiency of polyaniline modified TiO2 nanoparticles. Appl Catal B 136–137:133–139CrossRefGoogle Scholar
  49. 49.
    Zhang LJ, Wan MX (2003) Polyaniline/TiO2 composite nanotubes. J Phys Chem B 107:6748–6753CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanPeople’s Republic of China

Personalised recommendations