Advertisement

Transition Metal Chemistry

, Volume 44, Issue 6, pp 535–544 | Cite as

Reductions of the cisplatin-based platinum(IV) prodrug cis,cis,trans-[Pt(NH3)2Cl2Br2] by predominant biological thiols: kinetic and mechanistic studies

  • Wenfang Wan
  • Jingjing Sun
  • Wanru Liu
  • Shuying HuoEmail author
  • Shigang ShenEmail author
Article
  • 117 Downloads

Abstract

The reductions of the anticancer-active platinum(IV) complex cis,cis,trans-[Pt(NH3)2Cl2Br2] by three predominant biological thiols (cysteine, homocysteine and glutathione) were studied kinetically in the present work. The reductions show second-order kinetics, being first order each in [Pt(IV)] and in [thiol]. The second-order rate constant k′ was increased dramatically when the pH of reaction media was increased. Thiols were oxidized to their intermolecular disulfides. Accordingly, mechanisms containing a transition state S-Br-Pt are proposed, from which the overall rate laws were deduced. The rate-determining rate constants were also calculated by simulation of k′-pH data. The reactivity trend for the reduction of cis,cis,trans-[Pt(NH3)2Cl2Br2] is ordered as Cys > GSH > Hcy by comparison of k′ under the same reaction conditions. The rate for the reduction of the axial bromide-coordinated Pt(IV) complex is much faster than that of reduction of the axial chloride-coordinated one. In addition, the reduction rate is related to the equatorial and axial ligands.

Notes

Acknowledgements

We gratefully acknowledge the financial support of this work by the Natural Science Foundation of Hebei Province (B2016201014), by the Natural Science Foundation of Educational Commission of Hebei Province (ZD2016073) and by the National Natural Science Foundation of China (21406047).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest in this work.

Supplementary material

11243_2019_311_MOESM1_ESM.doc (118 kb)
Supplementary material 1 (DOC 118 kb)

References

  1. 1.
    Dlruba S, Kalayda GV (2016) Cancer Chemother Pharmacol 77:1103–11244CrossRefGoogle Scholar
  2. 2.
    Wang D, Lippard SJ (2005) Nat Rev Drug Discov 4:307–320CrossRefGoogle Scholar
  3. 3.
    Wong E, Giandomenco CM (1999) Chem Rev 9:92451–92466Google Scholar
  4. 4.
    Wheate NJ, Walker S, Craig GE, Oun R (2010) Dalton Trans 39:8113–8127CrossRefGoogle Scholar
  5. 5.
    Kelland L (2007) Nat Rew Cancer 7:573–584CrossRefGoogle Scholar
  6. 6.
    Gibson D (2009) Dalton Trans 10681–10689Google Scholar
  7. 7.
    Johnstone TC, Suntharalingam K, Lippard SJ (2016) Chem Rev 116:2436–3486CrossRefGoogle Scholar
  8. 8.
    Gibson D (2016) Dalton Trans 45:12983–12991CrossRefGoogle Scholar
  9. 9.
    Venkatesh V, Sadler PJ (2018) Met Ions Life Sci 18:69–108Google Scholar
  10. 10.
    Wilson JJ, Lippard SJ (2014) Chem Rev 114:4470–4495CrossRefGoogle Scholar
  11. 11.
    Ma L, Wang N, Ma R, Li C, Xu Z, Tse M, Zhu G (2018) Angew Chem Int Ed 57:1–6CrossRefGoogle Scholar
  12. 12.
    Hua W, Zhao J, Hu W, Gou S (2018) J Inorg Biochem 186:17–23CrossRefGoogle Scholar
  13. 13.
    Sharma NK, Ameta RK, Singh M (2016) J Mol Liq 222:752–761CrossRefGoogle Scholar
  14. 14.
    Harper BWJ, Petruzzella E, Sirota R, Faccioli FF, Aldrich-Wright JR, Gandin V, Gibson D (2017) Dalton Trans 46:7005–7019CrossRefGoogle Scholar
  15. 15.
    Zhao X, Zhang Y, Hou X, Shi J, Shen S, Huo S (2017) Transit Met Chem 42:219–228CrossRefGoogle Scholar
  16. 16.
    Hall MD, Mellor HR, Calleghan R, Hambley TW (2007) J Med Chem 30:3403–3411CrossRefGoogle Scholar
  17. 17.
    Hall MD, Hambley TW (2002) Coord Chem Rev 232:49–67CrossRefGoogle Scholar
  18. 18.
    Gupta M, Grothey E, Gibson T, Sartor O (2007) Clin Genitourin Cancer 5:249–255CrossRefGoogle Scholar
  19. 19.
    Choy H, Park C, Yao M (2008) Clin Cancer Res 14:1633–1638CrossRefGoogle Scholar
  20. 20.
    Johnstone TC, Alexander SM, Wilson JJ, Lippard SJ (2015) Dalton Trans 44:119–129CrossRefGoogle Scholar
  21. 21.
    Xu Z, Wang Z, Yiu S, Zhu G (2015) Dalton Trans 44:19918–19926CrossRefGoogle Scholar
  22. 22.
    Hall MD, Alderden RA, Zhang M, Beale PJ, Cai Z, Lai B, Stampfl APJ, Hambley TW (2006) J Struct Biol 155:38–44CrossRefGoogle Scholar
  23. 23.
    Wexselblatt E, Gibson D (2012) J Inorg Biochem 117:220–229CrossRefGoogle Scholar
  24. 24.
    Frensemeier LM, Mayr J, Koellensperger G, Keppler BK, Kowol CR, Karst U (2018) Analyst 143:1997–2001CrossRefGoogle Scholar
  25. 25.
    Ponte F, Russo N, Sicilia E (2018) Chem Eur J 24:9572–9580CrossRefGoogle Scholar
  26. 26.
    Tolbatov I, Coletti C, Marrone A, Re N (2018) Inorg Chem 57:3411–3419CrossRefGoogle Scholar
  27. 27.
    Turell L, Radi R, Alvarez B (2013) Free Rad Biol Med 65:244–253CrossRefGoogle Scholar
  28. 28.
    Shi T, Berglund J, Elding LI (1996) Inorg Chem 35:3498–3503CrossRefGoogle Scholar
  29. 29.
    Lemma K, Shi T, Elding LI (2000) Inorg Chem 39:1728–1734CrossRefGoogle Scholar
  30. 30.
    Lemma K, Berglund J, Farrell N, Elding LI (2000) J Biol Inorg Chem 5:300–306CrossRefGoogle Scholar
  31. 31.
    Lu T, Dong J, Nan C, Huo S, Shen S, Sun S, Shi T (2015) Transit Met Chem 40:869–875CrossRefGoogle Scholar
  32. 32.
    Tian H, Dong J, Chi X, Xu L, Shi H, Shi T (2017) Int J Chem Kinet 49:681–689CrossRefGoogle Scholar
  33. 33.
    Dong J, Huo S, Shen S, Xu J, Shi T, Elding LI (2016) Bioorg Med Chem Lett 26:4261–4266CrossRefGoogle Scholar
  34. 34.
    Dong J, Tian H, Song C, Shi T, Elding LI (2018) Dalton Trans 47:5548–5552CrossRefGoogle Scholar
  35. 35.
    Dong J, Ren Y, Huo S, Shen S, Xu J, Tian H, Shi T (2016) Dalton Trans 45:11326–11337CrossRefGoogle Scholar
  36. 36.
    Göschl S, Varbanov HP, Theiner S, Jakupec MA, Galanski M, Keppler BK (2016) J Inorg Biochem 160:264–274CrossRefGoogle Scholar
  37. 37.
    Höfera D, Varbanova HP, Hejla M, Jakupeca MA, Rollera A, Galanskia M, Kepplera BK (2017) J Inorg Biochem 174:119–129CrossRefGoogle Scholar
  38. 38.
    Sinisi M, Intini FP, Natile G (2012) Inorg Chem 51:9694–9704CrossRefGoogle Scholar
  39. 39.
    Taylor JE, Yan JF, Wang JL (1966) J Am Chem Soc 88:1663–1667CrossRefGoogle Scholar
  40. 40.
    Kachur AV, Koch CJ, Biaglow JE (1998) Free Rad Res 28:259–269CrossRefGoogle Scholar
  41. 41.
    Ehrenberg L, Harms-Ringdahl M, Fedorcsak I, Granath F (1989) Acta Chem Scand 43:177–187CrossRefGoogle Scholar
  42. 42.
    Lu Y, Hou X, Zhao X, Liu M, Shen F, Ren Y, Liu Y, Huo S, Shen S (2016) Transit Met Chem 41:45–55CrossRefGoogle Scholar
  43. 43.
    Huo S, Dong J, Song C, Xu J, Shen S, Shi T (2014) RSC Adv 4:7402–7409CrossRefGoogle Scholar
  44. 44.
    Huo S, Shi H, Liu D, Shen S, Zhang J, Song C, Shi T (2013) J Inorg Biochem 125:9–15CrossRefGoogle Scholar
  45. 45.
    Huo S, Shen S, Liu D, Shi T (2012) J Phys Chem B 116:6522–6528CrossRefGoogle Scholar
  46. 46.
    Niu T, Wan W, Li X, Su D, Huo S, Shen S (2018) J Mol Liq 252:24–29CrossRefGoogle Scholar
  47. 47.
    Huo S, Shen S, Liu D, Shi T (2014) Dalton Trans 43:15328–15336CrossRefGoogle Scholar
  48. 48.
    Shi T, Berglund J, Elding LI (1997) J Chem Soc Dalton Trans 2073–2077Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, MOE Key Laboratory of Medicinal Chemistry and Molecular DiagnosticsHebei UniversityBaodingPeople’s Republic of China

Personalised recommendations