A comparative study of electrocatalytic hydrogen evolution by iron complexes of corrole and porphyrin from acetic acid and water

  • Ya-Qian Zhong
  • Md. Sahadat Hossain
  • Ying Chen
  • Qi-Hang Fan
  • Shu-Zhong Zhan
  • Hai-Yang LiuEmail author


Iron complexes of corrole and porphyrin bearing electron-withdrawing meso-C6F5 groups had been used for the electrocatalytic evolution of hydrogen. In neutral buffer solution, evolution of hydrogen turnover frequency (TOF) values for iron corrole and iron porphyrin were 274 and 233 h−1 at an overpotential of 838 mV versus standard hydrogen electrode (SHE). The corresponding TOF values had dropped sharply to 19.79 h−1 and 14.36 h−1 in acetic acid media at an overpotential of 942 mV versus SHE. Interestingly, hydrogen evolution catalyzed by Fe(III) porphyrin was mainly via an Fe(I)-H intermediate, while a higher valent Fe(III)-H intermediate was observed for Fe(IV) corrole.



This research was funded by National Natural Science Foundation of China (No. 21671068).

Supplementary material

11243_2019_307_MOESM1_ESM.docx (4.8 mb)
Supplementary material 1 (DOCX 4870 kb)


  1. 1.
    Liu YR, Du YM, Gao WK, Dong B, Han Y, Wang L (2018) Electrochim Acta 290:339–346CrossRefGoogle Scholar
  2. 2.
    Lv T, Wu MH, Guo MX, Liu Q, Jia LS (2019) Chem Eng J 356:580–591CrossRefGoogle Scholar
  3. 3.
    Dey S, Rana A, Dey SG, Dey A (2013) ACS Catal 3:429–436CrossRefGoogle Scholar
  4. 4.
    Solis BH, Maher AG, Honda T, Powers DC, Nocera DG, Hammes-Schiffer S (2014) ACS Catal 4:4516–4526CrossRefGoogle Scholar
  5. 5.
    Lubitz W, Ogata H, Rüdiger O, Reijerse E (2014) Chem Rev 114:4081–4148CrossRefGoogle Scholar
  6. 6.
    Tard C, Pickett CJ (2009) Chem Rev 109:2245–2274CrossRefGoogle Scholar
  7. 7.
    Dempsey JL, Brunschwig BS, Winkler JR, Gray HB (2009) Acc Chem Res 42:1995–2004CrossRefGoogle Scholar
  8. 8.
    Popczun EJ, Read CG, Roske CW, Lewis NS, Schaak RE (2014) Angew Chem Int Ed 53:5427–5430CrossRefGoogle Scholar
  9. 9.
    Cao J-P, Fang T, Fu L-Z, Zhou L-L, Zhan S-Z (2014) Int J Hydrog Energy 39:13972–13978CrossRefGoogle Scholar
  10. 10.
    Callejas JF, McEnaney JM, Read CG, Crompton JC, Biacchi AJ, Popczun EJ, Gordon TR, Lewis NS, Schaak RE (2014) ACS Nano 8:11101–11107CrossRefGoogle Scholar
  11. 11.
    Marinescu SC, Winkler JR, Gray HB (2012) Proc Natl Acad Sci USA 109:15127–15131CrossRefGoogle Scholar
  12. 12.
    Bediako DK, Solis BH, Dogutan DK, Roubelakis MM, Maher AG, Lee CH, Chambers MB, Hammes-Schiffer S, Nocera DG (2014) Proc Natl Acad Sci USA 111:15001–15006CrossRefGoogle Scholar
  13. 13.
    Yuan H-Q, Wang H-H, Kandhadi J, Wang H, Zhan S-Z, Liu H-Y (2017) Appl Organomet Chem. Google Scholar
  14. 14.
    Mondal B, Sengupta K, Rana A, Mahammed A, Botoshansky M, Dey SG, Gross Z, Dey A (2013) Inorg Chem 52:3381–3387CrossRefGoogle Scholar
  15. 15.
    Lei H, Han A, Li F, Zhang M, Han Y, Du P, Lai W, Cao R (2014) Phys Chem Chem Phys 16:1883–1893CrossRefGoogle Scholar
  16. 16.
    Li M, Niu Y, Zhu W, Mack J, Fomo G, Nyokong T, Liang X (2017) Dyes Pigments 137:523–531CrossRefGoogle Scholar
  17. 17.
    Musselman BD, Watson JT, Chang CK (1986) Org Mass Spectrom 21:215–219CrossRefGoogle Scholar
  18. 18.
    Han Y, Fang H, Jing H, Sun H, Lei H, Lai W, Cao R (2016) Angew Chem Int Ed 55:5457–5462CrossRefGoogle Scholar
  19. 19.
    Zhang D-X, Yuan H-Q, Wang H-H, Ali A, Wen W-H, Xie A-N, Zhan S-Z, Liu H-Y (2017) Transit Met Chem 42:773–782CrossRefGoogle Scholar
  20. 20.
    Wu Y, Rodríguez-López N, Villagrán D (2018) Chem Sci 9:4689–4695CrossRefGoogle Scholar
  21. 21.
    Lei H, Fang H, Han Y, Lai W, Fu X, Cao R (2015) ACS Catal 5:5145–5153CrossRefGoogle Scholar
  22. 22.
    Levy N, Mahammed A, Friedman A, Gavriel B, Gross Z, Elbaz L (2016) ChemCatChem 8:2832–2837CrossRefGoogle Scholar
  23. 23.
    Simkhovich L, Mahammed A, Goldberg I, Gross Z (2001) Chem Eur J 7:1041–1055CrossRefGoogle Scholar
  24. 24.
    Gross Z, Galili N, Saltsman I (1999) Angew Chem Int Ed 38:1427–1429CrossRefGoogle Scholar
  25. 25.
    Lindsey JS, Wagner RW (1989) J Org Chem 54:828–836CrossRefGoogle Scholar
  26. 26.
    Zhang R, Vanover E, Chen T-H, Thompson H (2013) Appl Catal A Gen 464:95–100CrossRefGoogle Scholar
  27. 27.
    Ghaleno MR, Ghaffari-Moghaddam M, Khajeh M, Oveisi AR, Bohlooli M (2019) J Colloid Interface Sci 535:214–226CrossRefGoogle Scholar
  28. 28.
    Schmid M, Zugermeier M, Herritsch J, Klein BP, Krug CK, Ruppenthal L, Mueller P, Kothe M, Schweyen P, Broering M, Gottfried JM (2018) J Phys Chem C 122(19):10392–10399CrossRefGoogle Scholar
  29. 29.
    Fang Y, Ou Z, Kadish KM (2017) Chem Rev 117(4):3377–3419CrossRefGoogle Scholar
  30. 30.
    Thoi VS, Karunadasa HI, Surendranath Y, Long JR, Chang CJ (2012) Energy Environ Sci 5:7762–7770CrossRefGoogle Scholar
  31. 31.
    Alenezi K (2017) Int J Electrochem Sci 12:812–818CrossRefGoogle Scholar
  32. 32.
    Felton GAN, Glass RS, Lichtenberger DL, Evans DH (2006) Inorg Chem 45:9181–9184CrossRefGoogle Scholar
  33. 33.
    Karunadasa HI, Montalvo E, Sun Y, Majda M, Long JR, Chang CJ (2012) Science 335:698–702CrossRefGoogle Scholar
  34. 34.
    Hocking RK, George SD, Gross Z, Walker FA, Hodgson KO, Hedman B, Solomon EI (2009) Inorg Chem 48:1678–1688CrossRefGoogle Scholar
  35. 35.
    Morales Vasquez MA, Hamer M, Neuman NI, Tesio AY, Hunt A, Bogo H, Calvo EJ, Doctorovich F (2017) ChemCatChem 9:3259–3268CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ya-Qian Zhong
    • 1
  • Md. Sahadat Hossain
    • 1
  • Ying Chen
    • 1
  • Qi-Hang Fan
    • 1
  • Shu-Zhong Zhan
    • 1
  • Hai-Yang Liu
    • 1
    Email author
  1. 1.Department of Chemistry, The Key Laboratory of Fuel Cell Technology of Guangdong ProvinceSouth China University of TechnologyGuangzhouChina

Personalised recommendations