Cyanide-bridged polynuclear heterobimetallic complexes: synthesis, crystal structures, and magnetic properties

  • Wenlong Lan
  • Xueting Wang
  • Lu Yang
  • Weijiang Si
  • Shujuan Zhuang
  • Hui Liu
  • Qingyun Liu
  • Daopeng ZhangEmail author


The reactions of [MnIII(3-EtOSalen)(H2O)2]ClO4 (Salen=N,N-ethylenebis(salicylideneaminato)dianion) with K3[M(CN)8] (M=Mo, W) have been investigated, from which cyanide-bridged hexanuclear Mo–Mn and binuclear W–Mn complexes formulated as {[Mn(3-EtOSalen)(H2O)]4[Mn(3-EtOSalen)(CH3OH)][MoCN8]}(CN)2·CH3CN·H2O (1) and {[Mn(3-EtOSalen)(H2O)2][Mn(3-EtOSalen)(H2O)(EtOH][MnIII(3-EtOSalen)(H2O) W(CN)8]}·0.5CH3OH (2), respectively, were obtained and characterized by elemental analysis, IR spectroscopy and X-ray crystal structure determination. X-ray diffraction analysis for complex 1 shows that it has a cyanide-bridged cationic hexanuclear Mn5Mo structure in which two free and disordered CN ions from the cyanide precursor are present as balance anions, while the [Mo(CN)8]3− ion acting as a pentadentate ligand connects five Schiff base manganese(III) units. In complex 2, the [W(CN)8]3− ion is coordinated with a single Schiff base manganese unit by one of its cyanide groups, so forming a cyanide-bridged anionic binuclear structure whose dinegative charge is balanced by two free Schiff base manganese cations. Both of these cyanide-bridged complexes can be considered as self-complementary, such that the coordinated aqua ligand from one complex and the O4 compartment from the Schiff base ligand of the neighboring complex form a supramolecular two-dimensional network and a one-dimensional ladder-like double-chain structure, respectively. Investigation of the magnetic properties of these complexes reveals antiferromagnetic interactions within the cyanide-bridged Mn–Mo/W units. The magnetic susceptibilities of both complexes have been modeled.



This work was supported by the Natural Science Foundation of China (21171107 and 21671121).


  1. 1.
    Entley WR, Girolami GS (1995) Science 268:397Google Scholar
  2. 2.
    Ferlay S, Mallah T, Ouahès R, Veillet P, Verdaguer M (1995) Nature 378:701Google Scholar
  3. 3.
    Hatlevik Ø, Buschmann WE, Zhang J, Manson JL, Miller JS (1999) Adv Mater 11:914Google Scholar
  4. 4.
    Holmes SM, Girolami GS (1999) J Am Chem Soc 121:5593Google Scholar
  5. 5.
    Herrera JM, Marvaud V, Verdaguer M, Marrot J, Kalisz M, Mathonière C (2004) Angew Chem Int Ed 43:5468Google Scholar
  6. 6.
    Long J, Chamoreau LM, Mathonière C, Marvaud V (2008) Inorg Chem 47:22Google Scholar
  7. 7.
    Bleuzen A, Marvaud V, Mathonière C, Sieklucka B, Verdaguer M (2009) Inorg Chem 48:3453Google Scholar
  8. 8.
    Jeon IR, Calancea S, Panja A, Piñero-Cruz DM, Koumousi ES, Dechambenoit P, Coulon C, Wattiaux A, Rosa P, Mathonière C, Clérac R (2013) Chem Sci 4:2463Google Scholar
  9. 9.
    Trzop E, Zhang DP, Piñiro-Lopez L, Valverde-Muñoz FJ, Muñoz MC, Palatinus L, Guerin L, Cailleau H, Real JA, Collet E (2016) Angew Chem Int Ed 55:8675Google Scholar
  10. 10.
    Zhang DP, Valverde-Muñoz FJ, Bartual-Murgui C, Piñeiro-López L, Carmen-Muñoz M, Real JA (2018) Inorg Chem 57:1562Google Scholar
  11. 11.
    Yao MX, Zheng Q, Cai XM, Li YZ, Song Y, Zuo JL (2012) Inorg Chem 51:2140Google Scholar
  12. 12.
    Zhang DP, Bian YZ, Qin J, Wang P, Chen X (2014) Dalton Trans 43:945Google Scholar
  13. 13.
    Zhang DP, Zhuo SP, Zhang HY, Wang P, Jiang JZ (2015) Dalton Trans 44:4655Google Scholar
  14. 14.
    Freedman DE, Jenkins DM, Iavarone AT, Long JR (2008) J Am Chem Soc 130:2884Google Scholar
  15. 15.
    Sutter JP, Dhers S, Rajamani R, Ramasesha S, Costes JP, Duhayon C, Vendier L (2009) Inorg Chem 48:5820Google Scholar
  16. 16.
    Goodwin AL, Kennedy BJ, Kepert C (2009) J Am Chem Soc 131:6334Google Scholar
  17. 17.
    Miyasaka H, Julve M, Yamashita M, Clérac R (2009) Inorg Chem 48:3420Google Scholar
  18. 18.
    Zhang DP, Zhang LF, Chen YT, Wang HL, Ni ZH, Wernsdorfer W, Jiang JZ (2010) Chem Commun 46:3550Google Scholar
  19. 19.
    Ru J, Gao F, Wu T, Yao MX, Li YZ, Zuo JL (2014) Dalton Trans 43:933Google Scholar
  20. 20.
    Kiernan PM (1976) Inorg Chim Acta 20:89Google Scholar
  21. 21.
    Burdett JK, Hoffmann R, Fay RC (1978) Inorg Chem 17:2553Google Scholar
  22. 22.
    Zhang DP, Si WJ, Wang P, Chen X, Jiang JZ (2014) Inorg Chem 53:3494Google Scholar
  23. 23.
    Przychodzeń P, Korzeniak T, PodgajnyR SiekluckaB (2006) Coord Chem Rev 250:2234Google Scholar
  24. 24.
    Zhang DP, Zhang LF, Li GL, Ni ZH (2013) Chem Commun 49:9582Google Scholar
  25. 25.
    Miyasaka H, Saitoh A, Abe S (2007) Coord Chem Rev 251:2622Google Scholar
  26. 26.
    Miyasaka H, Matsumoto N, Okawa H, Re N, Gallo E, Floriani C (1996) J Am Chem Soc 118:981Google Scholar
  27. 27.
    Shi JW, Lan WL, Liu QY, Zhang DP (2018) Russ J General Chem 88:319Google Scholar
  28. 28.
    Kwak YH, Ryu DW, Lee JW, Yoon JH, Kim HC, Koh EK, Krinsky J, Hong CS (2010) Inorg Chem 49:4632Google Scholar
  29. 29.
    Shi JW, Lan WL, Zhou Y, Xue CC, Liu QY, Zhang DP (2018) J Chem Sci 130:19Google Scholar
  30. 30.
    Nastase S, Maxim C, Andruh M, Cano J, Ruiz-Perez C, Faus J, Lloret F, Julve M (2011) Dalton Trans 40:4898Google Scholar
  31. 31.
    Zhang DP, Kong LQ, Zhang HY (2015) Acta Chim Slov 62:219Google Scholar
  32. 32.
    Shi JW, Zhou Y, Xue CC, Liu QY, Zhang DP (2018) J Chem Res 42:38Google Scholar
  33. 33.
    Long J, Chamoreau LM, Marvaud V (2011) Eur J Inorg Chem 2011:4545Google Scholar
  34. 34.
    Zhang DP, Wang HL, Chen YT, Ni ZH, Tian LG, Jiang JZ (2009) Inorg Chem 48:11215Google Scholar
  35. 35.
    Zhang HY, Kong LQ, Zhang DP (2015) J Struct Chem 56:1533Google Scholar
  36. 36.
    Withers JR, Li DF, Triplet J, Ruschman C, Parkin S, Wang GB, Yee GT, Holmes SM (2007) Polyhedron 26:2353Google Scholar
  37. 37.
    Sheldrick GM (1997) SHELXTL97, program for the refinement of crystal structure. University of Göttingen, GöttingenGoogle Scholar
  38. 38.
    Nastase S, Maxim C, Duhayon C, Sutter JP, Andruh M (2013) Rev Roum Chim 58:355Google Scholar
  39. 39.
    Nemec I, Herchel R, Šilha T, Trávníček Z (2014) Dalton Trans 43:15602Google Scholar
  40. 40.
    Cano J (2003) VMPAG package. University of València, ValènciaGoogle Scholar
  41. 41.
    Yoo HS, Ko HH, Ryu DW, Lee JW, Yoon JH, Lee WR, Kim HC, Koh EK, Hong C (2009) Inorg Chem 48:5617Google Scholar
  42. 42.
    Przychodzeń P, Lewiński K, Bałanda M, Pełka R, Rams M, Wasiutyński T, Guyard-Duhayon C, Sieklucka B (2004) Inorg Chem 43:2967Google Scholar
  43. 43.
    Majcher AM, Pilet G, Mironov VS, Vostrikova KE (2017) Magnetochemistry 3:16Google Scholar
  44. 44.
    Yoon JH, Lee JW, Rau DW, Choi SY, Yoon SW, Suh BJ, Koh EK, Kim HC, Hong CS (2011) Inorg Chem 50:11306Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Wenlong Lan
    • 1
  • Xueting Wang
    • 1
  • Lu Yang
    • 1
  • Weijiang Si
    • 1
  • Shujuan Zhuang
    • 1
  • Hui Liu
    • 1
  • Qingyun Liu
    • 2
  • Daopeng Zhang
    • 1
    Email author
  1. 1.College of Chemical and Chemical EngineeringShandong University of TechnologyZiboPeople’s Republic of China
  2. 2.College of Chemical and Environmental EngineeringShandong University of Science and TechnologyQingdaoPeople’s Republic of China

Personalised recommendations