Comparative studies on the oxidative dechlorination of chlorophenols by a superoxide complex

  • Bula Singh
  • Ranendu Sekhar Das
  • Arabinda Mandal


The chlorophenols (CPs), 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP), are potent environmental hazards. They can be dechlorinated to safer products by reacting them with the Co(III)-bound superoxo complex [(NH3)5Co(µ-O2)Co(NH3)5]5+ (1). In acidic media, the redox reactions between 1 and all three CPs follow a first-order process and the observed rate constant ko values increase with increasing concentrations of CPs and pH of the medium. Our observations suggest that the deprotonated forms of the CPs are ~ 105 times more reactive than the protonated forms, and the reactions proceed via a common free radical mechanism. Initially, the CP molecules undergo 2-e oxidations by complex 1 to generate phenolic radicals, which then form unstable quinones. Through the aromatic ring opening, the latter intermediates finally degrade to different products. The reactivity order for these CPs is 4-CP ≈ 2,4,6-TCP > 2,4-DCP.

Supplementary material

11243_2018_273_MOESM1_ESM.docx (635 kb)
Supplementary material 1 (DOCX 635 kb)


  1. 1.
    Keith LH, Telliard WA (1979) Environ Sci Technol 13:416–423CrossRefGoogle Scholar
  2. 2.
    Armenante PM, Kafkewitz D, Lewandowski GA, Jou CJ (1999) Water Res 30:681–692CrossRefGoogle Scholar
  3. 3.
    Fabbri D, Prevot AB, Pramauro E (2006) Appl Catal B 62:21–27CrossRefGoogle Scholar
  4. 4.
    Howard PH (1989) Handbook of environmental fate and exposure data for organic chemical. Volume I. Large production and priority pollutants, vol 535. Lewis Publishers, Chelsea, pp 169–175Google Scholar
  5. 5.
    Davia ML, Gnudi F (1999) Water Res 33:3213–3219CrossRefGoogle Scholar
  6. 6.
    Hu X, Ji H, Wu L (2012) RSC Adv 2:12378–12383CrossRefGoogle Scholar
  7. 7.
    Bunce NJ, Nakai JS (1989) J Air Pollut Control Assoc 39:820–823Google Scholar
  8. 8.
    Boule P, Guyon C, Lemaire J (1982) Chemosphere 11:1179–1188CrossRefGoogle Scholar
  9. 9.
    Choudhry GG, Hutzinger O (1982) Photochemical formation and degradation of polychlorinated dibenzofurans and dibenzo-p-dioxins. In: Gunther FA (ed) Residue reviews. Springer, New York, pp 113–114CrossRefGoogle Scholar
  10. 10.
    Kochany J, Bolton JR (1991) J Phys Chem 95:5116–5210CrossRefGoogle Scholar
  11. 11.
    Gupta SS, Stadler M, Noser CA, Ghosh A, Steinhoff B, Lenoir D, Horwitz CP, Schramm KW, Collins TJ (2002) Science 296:326–497CrossRefGoogle Scholar
  12. 12.
    Pera-Titus M, Garcı́a-Molina V, Baños MA, Giménez J, Esplugas S (2004) Appl Catal B 47:219–256CrossRefGoogle Scholar
  13. 13.
    Chaliha S, Bhattacharyya KG, Paul P (2008) Clean 36:488–497Google Scholar
  14. 14.
    Nagata Y, Nakagawa M, Okuno H, Mizukoshi Y, Yim B, Maed Y (2000) Ultrason Sonochem 7:115–120CrossRefGoogle Scholar
  15. 15.
    Tu Y, Xiong Y, Tian S, Kongb L, Descorme C (2014) J Hazard Mater 276:88–96CrossRefGoogle Scholar
  16. 16.
    Sahinkaya E, Dilek FB (2006) Biochem Eng J 31:141–147CrossRefGoogle Scholar
  17. 17.
    Field JA, Sierra-Alvarez R (2008) Rev Environ Sci Biotechnol 7:211–241CrossRefGoogle Scholar
  18. 18.
    Kusmierek K (2016) React Kinet Mech Catal 119:19–34CrossRefGoogle Scholar
  19. 19.
    Singh SP, Wilson JH, Counce RM, Lucero AJ, Reed GD, Ashworth RA, Elliott MG (1992) Ind Eng Chem Res 31:574–580CrossRefGoogle Scholar
  20. 20.
    Munoz M, de Pedro ZM, Pliego G, Casas JA, Rodriguez JJ (2012) Ind Eng Chem Res 51:13092–13099CrossRefGoogle Scholar
  21. 21.
    Ryu JY (2008) Chemosphere 71:1100–1109CrossRefGoogle Scholar
  22. 22.
    Wiater-Protas I, Louw R (2001) Eur J Org Chem 20:3945–3952CrossRefGoogle Scholar
  23. 23.
    Vogel AI (1989) In: Jeffery GH, Basett J, Mendham J, Denny RC (eds) Vogel’s textbook of quantitative chemical analysis, 5th edn. The English language book Society and Longman, London, pp 257–308Google Scholar
  24. 24.
    Saha SK, Ghosh MC, Gould ES (1992) Inorg Chem 31:3358–3362CrossRefGoogle Scholar
  25. 25.
    Davies R, Mori M, Sykes AG, Weil JA (1982) Inorg Synth 12:197Google Scholar
  26. 26.
    Saha SK, Ghosh MC, Gould ES (1992) Inorg Chem 31:5439–5443CrossRefGoogle Scholar
  27. 27.
    Mondal A, Banerjee R (2009) Ind J. Chem 48A:645–649Google Scholar
  28. 28.
    Davies R, Mori M, Sykes AG, Weil JA (1982) In: Parry RW (ed) Inorganic syntheses, vol 12. McGraw-Hill Book Company, New York, pp 199–202Google Scholar
  29. 29.
    Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds, part B, 6th edn. Wiley, New York, pp 161–167Google Scholar
  30. 30.
    Zazo JA, Casas JA, Mohedano AF, Gilarranz MA, Rodriguez JJ (2005) Environ Sci Technol 39:9295–9302CrossRefGoogle Scholar
  31. 31.
    Sorokin A, Meunier B (1996) Chem Eur J 2:1308–1317CrossRefGoogle Scholar
  32. 32.
    Kim DH, Mulholland JA, Ryu JY (2007) Chemosphere 67:S135–S143CrossRefGoogle Scholar
  33. 33.
    Hong J, Kim DG, Seo JJ, Lee C, Chung C, Kim KW (2003) Anal Sci 19:537–542CrossRefGoogle Scholar
  34. 34.
    Brillas E, Arias C, Cabot PL, Centellas F, Garrido JA, Rodriguez RM (2006) Port Electrochim Acta Rev 24:159–189CrossRefGoogle Scholar
  35. 35.
    Kucharska M, Naumczyk J (2009) Environ Prot Eng 2:47–55Google Scholar
  36. 36.
    Gain S, Das RS, Banerjee R, Mukhopadhyay S (2016) J Coord Chem 69:2136CrossRefGoogle Scholar
  37. 37.
    Czaplicka M (2004) Sci Total Environ 322:21–39CrossRefGoogle Scholar
  38. 38.
    Mayer JM (2004) Annu Rev Phys Chem 55:363–390CrossRefGoogle Scholar
  39. 39.
    Huynh MHV, Meyer TJ (2007) Chem Rev 107:5004–5064CrossRefGoogle Scholar
  40. 40.
    Mora-Diez N, Egorova Y, Plommera H, Tremaine PR (2015) RSC Adv 5:9097–9109CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of ChemistryVisva-BharatiSantiniketanIndia
  2. 2.Department of ChemistryRanaghat CollegeNadiaIndia
  3. 3.Department of ChemistryBidhannagar CollegeKolkataIndia

Personalised recommendations