Transition Metal Chemistry

, Volume 43, Issue 7, pp 571–577 | Cite as

Bis-chelates of nickel(II) and copper(II) with an O,S-donor piperazine ligand

  • Haridas MandalEmail author


A bidentate O,S-donor ligand N-(4-benzoyl-piperazine-1-carbothioyl)-benzamide (HL) was synthesized from the reaction of in situ generated benzoylisothiocyanate with piperazine and benzoyl chloride. Reaction of HL with the perchlorate salts of NiII and CuII in DMF–MeOH mixture using NEt3 as base afforded complexes 1 and 2 as crystalline solids in moderate yields. Physico-chemical and spectroscopic studies confirmed the chemical compositions of both the free ligand and its M(O,S)2 type metal complexes. The ligand undergoes keto-thione to keto-thiol tautomerization during metalation which is the driving force for the formation of neutral bis-chelates. The X-ray crystal structure of complex 2 shows bis-chelation with a cis-conformation in an overall square planar environment.

Graphical abstract

M(O,S)2 complexes have been stabilized in cis-conformation from a piperazine based thiourea ligand through keto-imine-thiol tautomerization.

Supplementary material

11243_2018_243_MOESM1_ESM.doc (1.4 mb)
Supplementary material 1 (DOC 1415 kb)


  1. 1.
    Maurya MR, Uprety B, Avecilla F, Tariq S, Azam A (2015) Eur J Med Chem 98:54–60CrossRefGoogle Scholar
  2. 2.
    Koch KR (2001) Coord Chem Rev 216:473–488CrossRefGoogle Scholar
  3. 3.
    Aly AA, Malah TE, Ishak EA, Brown AB, Elayat WM (2016) J Heterocycl Chem 53:963–969CrossRefGoogle Scholar
  4. 4.
    Pape S, Wessig P, Brunner H (2016) J Org Chem 81:4701–4712CrossRefGoogle Scholar
  5. 5.
    Guang J, Larson AJ, Zhao JCG (2015) Adv Synth Catal 357:523–529CrossRefGoogle Scholar
  6. 6.
    Mao Z, Lin A, Shi Y, Mao H, Li W, Cheng Y, Zhu C (2013) J Org Chem 78:10233–10239CrossRefGoogle Scholar
  7. 7.
    Gunasekaran N, Jerome P, Ng SW, Tiekink ERT, Karvembu R (2012) J Mol Catal A Chem 353–354:156–162CrossRefGoogle Scholar
  8. 8.
    Okino T, Nakamura S, Furukawa T, Takemoto Y (2004) Org Lett 6:625–627CrossRefGoogle Scholar
  9. 9.
    Huang HB, Jacobsen EN (2006) J Am Chem Soc 128:7170–7171CrossRefGoogle Scholar
  10. 10.
    Haynes CJE, Busschaert N, Kirby IL, Herniman J, Light ME, Wells NJ, Marques I, Félix V, Gale PA (2014) Org Biomol Chem 12:62–72CrossRefGoogle Scholar
  11. 11.
    Nie L, Li Z, Han J, Zhang X, Yang R, Liu WX, Wu FY, Xie JW, Zhao YF, Jiang YB (2004) J Org Chem 69:6449–6454CrossRefGoogle Scholar
  12. 12.
    Lee DH, Lee HY, Lee KH, Hong JI (2001) Chem Commun 32:1188–1189CrossRefGoogle Scholar
  13. 13.
    Schuster M, Schwarzer M (1996) Anal Chim Acta 328:1–11CrossRefGoogle Scholar
  14. 14.
    Bourne S, Koch KR (1993) J Chem Soc, Dalton Trans 13:2071–2072CrossRefGoogle Scholar
  15. 15.
    Ramasamy K, Malik MA, Helliwell M, Tuna F, O’Brien P (2010) Inorg Chem 49:8495–8503CrossRefGoogle Scholar
  16. 16.
    Ashraf S, Saeed A, Malik MA, Flörke U, Bolte M, Haider N, Akhtar J (2014) Eur J Inorg Chem 3:533–538CrossRefGoogle Scholar
  17. 17.
    Yang W, Liu H, Li M, Wang F, Zhou W, Fan J (2012) J Inorg Biochem 116:97–105CrossRefGoogle Scholar
  18. 18.
    Lopez-Sandoval H, Londono-Lemos ME, Garza-Velasco R, Poblano-Melendez I, Granada-Macıas P, Gracia-Mora I, Barba-Behrens N (2008) J Inorg Biochem 102:1267–1276CrossRefGoogle Scholar
  19. 19.
    Weiqun Z, Wen Y, Liqun X, Xianchen C (2005) J Inorg Biochem 99:1314–1319CrossRefGoogle Scholar
  20. 20.
    Kovala-Demertzi D, Alexandratos A, Papageorgiou A, Yadav PN, Dalezis P, Demertzis MA (2008) Polyhedron 27:2731–2738CrossRefGoogle Scholar
  21. 21.
    Khan KM, Naz F, Taha M, Khan A, Perveen S, Choudhary MI, Voelter W (2014) Eur J Med Chem 74:314–323CrossRefGoogle Scholar
  22. 22.
    Qiao L, Huang J, Hu W, Zhang Y, Guo J, Cao W, Miao K, Qin B, Song J (2017) J Mol Struct 1139:149–159CrossRefGoogle Scholar
  23. 23.
    O’Reilly B, Plutín AM, Pérez H, Calderón O, Ramos R, Martínez R, Toscano RA, Duque J, Rodríguez-Solla H, Martínez-Alvarez R, Suárez M, Martín N (2012) Polyhedron 36:133–140CrossRefGoogle Scholar
  24. 24.
    Gunasekaran N, Bhuvanesh NSP, Karvembu R (2017) Polyhedron 122:39–45CrossRefGoogle Scholar
  25. 25.
    Che DJ, Li G, Yao XL, Wu QJ, Wang WL, Zhu Y (1999) J Organomet Chem 584:190–196CrossRefGoogle Scholar
  26. 26.
    Kemp G, Roodt A, Purcell W, Koch KR (1997) J Chem Soc Dalton Trans 23:4481–4484CrossRefGoogle Scholar
  27. 27.
    Hanekom D, McKenzie JM, Derix NM, Koch KR (2005) Chem Commun 6:767–769CrossRefGoogle Scholar
  28. 28.
    Huy NH, Abram U (2007) Inorg Chem 46:5310–5319CrossRefGoogle Scholar
  29. 29.
    Weiqun Z, Wen Y, Lihua Q, Yong Z, Zhengfeng Y (2005) J Mol Struct 749:89–95CrossRefGoogle Scholar
  30. 30.
    Köhler R, Kirmse R, Richter R, Sieler J, Hoyer E (1986) Z Anorg Allg Chem 537:133–144CrossRefGoogle Scholar
  31. 31.
    Dhawan B, Southwick PL (1983) J Heterocycl Chem 20:243–244CrossRefGoogle Scholar
  32. 32.
    Sheldrick GM (2017) SHELX-2017, Programs for crystal structure determination. Universität Göttingen, GermanyGoogle Scholar
  33. 33.
    Brandenburg K, Berndt M (1999) Diamond, Version 2.1e, Crystal Impact GbR, Bonn, GermanyGoogle Scholar
  34. 34.
    Huy NH, Grewe J, Schroer J, Kuhn B, Abram U (2008) Inorg Chem 47:5136–5144CrossRefGoogle Scholar
  35. 35.
    Miedaner A, Haltiwanger RC, DuBois DL (1991) Inorg Chem 30:417–427CrossRefGoogle Scholar
  36. 36.
    Mandal H, Ray D (2014) Inorg Chim Acta 414:127–133CrossRefGoogle Scholar
  37. 37.
    Chamayou AC, Lüdeke S, Brecht V, Freedman TB, Nafie LA, Janiak C (2011) Inorg Chem 50:11363–11374CrossRefGoogle Scholar
  38. 38.
    Yang L, Powell DR, Houser RP (2007) Dalton Trans 9:955–964CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemical Division, Southern RegionGeological Survey of IndiaHyderabadIndia

Personalised recommendations