Advertisement

Transition Metal Chemistry

, Volume 43, Issue 4, pp 295–300 | Cite as

A green synthesis of biaryls in water catalyzed by palladium nanoparticles immobilized on N-amidinoglycine-functionalized iron oxide nanoparticles

  • Fatemeh Rafiee
  • Nasrin Mehdizadeh
Article
  • 151 Downloads

Abstract

Fe3O4 nanoparticles were prepared by co-precipitation and coated with SiO2 following the Stöber process. N-Amidinoglycine amino acid was then covalently connected to provide an excellent ligand for the immobilization of Pd nanoparticles. The resulting material was characterized by FE-SEM, TEM, EDX, XRD, VSM and ICP-AES analysis. The Fe3O4@SiO2@N-amidinoglycine@Pd0 proved to be a highly active catalyst for the Suzuki coupling reactions of various aryl halides with substituted phenylboronic acids in water, giving the desired products in excellent yields for short reaction times. Moreover, this catalyst can be easily recovered by using an external magnet and directly reused for several times without significant loss of activity.

Notes

Acknowledgements

We gratefully acknowledge the partial financial support received from the research council of Alzahra University.

Supplementary material

11243_2018_215_MOESM1_ESM.docx (497 kb)
Supplementary material 1 (DOCX 496 kb)

References

  1. 1.
    Lim CW, Lee IS (2010) Nano Today 5:412–434CrossRefGoogle Scholar
  2. 2.
    Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset JM (2011) Chem Rev 111:3036–3075CrossRefGoogle Scholar
  3. 3.
    Shylesh S, Schünemann V, Thiel WR (2010) Angew Chem Int Ed 49:3428–3459CrossRefGoogle Scholar
  4. 4.
    Tang T, Fan H, Ai S, Han R, Qiu Y (2011) Chemosphere 83:255–264CrossRefGoogle Scholar
  5. 5.
    Hu B, Pan J, Yu HL, Liu JW, Xu JH (2009) Process Biochem 44:1019–1024CrossRefGoogle Scholar
  6. 6.
    Gupta AK, Gupta M (2005) Biomaterials 26:3995–4021CrossRefGoogle Scholar
  7. 7.
    Ln Wu, Yang CY, Lv Z, Cui FW, Zhao L, Yang P (2015) RSC Adv 5:50557–50564CrossRefGoogle Scholar
  8. 8.
    Ahmadi R, Ranjbarnodeh E, Gu N (2012) Mater Sci Poland 30:382–389CrossRefGoogle Scholar
  9. 9.
    Balu AM, Baruwati B, Serrano E, Cot J, Garcia-Martinez J, Varma RS, Luque R (2011) Green Chem 13:2750–2758CrossRefGoogle Scholar
  10. 10.
    Deng Y, Cai Y, Sun Z, Zhao D (2011) Chem Phys Lett 510:1–13CrossRefGoogle Scholar
  11. 11.
    Lu AH, Salabas EL, Schüth F (2007) Angew Chem Int Ed 46:1222–1244CrossRefGoogle Scholar
  12. 12.
    Chekina N, Horak D, Jendelova P, Trchova M, Benes MJ, Hruby M, Herynek V, Turnovcova K, Sykova E (2011) J Mater Chem 21:7630–7639CrossRefGoogle Scholar
  13. 13.
    Yang J, Lee J, Kang J, Chung CH, Lee K, Suh JS, Yoon HG, Huh YM, Haam S (2008) Nanotechnology 19:075610CrossRefGoogle Scholar
  14. 14.
    Stöber W, Fink A, Bohn EJ (1968) J Colloid Interface Sci 26:62–69CrossRefGoogle Scholar
  15. 15.
    Lu Y, Yin Y, Mayers BT, Xia Y (2002) Nano Lett 2:183–186CrossRefGoogle Scholar
  16. 16.
    Graf C, Vossen DLJ, Imhof A, Van Blaaderen A (2003) Langmuir 19:6693–6700CrossRefGoogle Scholar
  17. 17.
    Qu H, Maa H, Zhou W, O’Connor CJ (2012) Inorg Chim Acta 389:60–65CrossRefGoogle Scholar
  18. 18.
    Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S, Barar J, Davaran S (2013) Colloids Surf B Biointerfaces 102:534–539CrossRefGoogle Scholar
  19. 19.
    Wang Z, Zhu H, Wang X, Yang F, Yang X (2009) Nanotechnology 20:465606–465615CrossRefGoogle Scholar
  20. 20.
    Miyaura N, Suzuki A (1995) Chem Rev 95:2457–2483CrossRefGoogle Scholar
  21. 21.
    Bringmann G, Gulder T, Gulder TAM, Breuning M (2011) Chem Rev 111:563–639CrossRefGoogle Scholar
  22. 22.
    Wencel-Delord J, Panossian A, Leroux FR, Colobert F (2015) Chem Soc Rev 44:3418–3430CrossRefGoogle Scholar
  23. 23.
    Meyer FM, Collins JC, Borin B, Bradow J, Liras S, Limberakis C, Mathiowetz AM, Philippe L, Price D, Song K, James K (2012) J Org Chem 7:3099–3114CrossRefGoogle Scholar
  24. 24.
    Kappaun S, Slugovc C, List EJW (2008) Int J Mol Sci 9:1527–1547CrossRefGoogle Scholar
  25. 25.
    Polshettiwar V, Decottignies A, Len C, Fihri A (2010) Chem Sus Chem 3:502–522CrossRefGoogle Scholar
  26. 26.
    Chatterjee A, Ward TR (2016) Catal Lett 146:820–840CrossRefGoogle Scholar
  27. 27.
    Liu X, Ma Z, Xing J, Liu H (2004) J Magn Magn Mater 270:1–6CrossRefGoogle Scholar
  28. 28.
    Sobhani S, Ghasemzadeh MS, Honarmand M, Zarifi F (2014) RSC Adv 4:44166–44174CrossRefGoogle Scholar
  29. 29.
    Ghorbani-Choghamarani A, Azadi G (2016) Appl Organomet Chem 30:247–252CrossRefGoogle Scholar
  30. 30.
    Veisi H, Ghadermazi M, Naderi A (2016) Appl Organomet Chem 30:341–345CrossRefGoogle Scholar
  31. 31.
    Yang P, Ma R, Bian F (2016) ChemCatChem 18:3746–3754CrossRefGoogle Scholar
  32. 32.
    Hajipour AR, Tadayoni NS, Mohammadsaleh F (2016) Appl Organomet Chem 30:777–782CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Physic-ChemistryAlzahra UniversityVanakIran

Personalised recommendations