Advertisement

Covalent bonding photosensitizer–catalyst dyads of ruthenium-based complexes designed for enhanced visible-light-driven water oxidation performance

  • Qihang Chen
  • Qianqian Zhou
  • Ting-Ting LiEmail author
  • Runze Liu
  • Hongwei Li
  • Fenya Guo
  • Yue-Qing ZhengEmail author
Article
  • 32 Downloads

Abstract

We have successfully prepared two ruthenium-based covalent bonding photosensitizer–catalyst dyads through a simple procedure. 1H NMR spectra of both dyads show that only a single stereoisomer was formed for each dyad. The spectroscopic and electrochemical properties and photocatalytic water oxidation activities of both dyads were investigated in detail. The results indicate that there is negligible electron communication between the photosensitizer and catalyst centers, and each component maintains the desired photophysical and electrochemical properties, which would diminish excited-state electron recombination by facilitating the intramolecular electron transfer. In the presence of excess sacrificial electron acceptor, the dyad with iodide ligand shows a 5.5-fold increase in catalytic performance as compared to its chloro analogue, indicating that the iodide ligand plays an important role during the catalytic cycle. Moreover, compared with the multi-component system, the dyad with iodide ligand exhibits a fourfold increase in catalytic turnover number.

Graphical abstract

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21603110) and K. C. Wong Magna Fund in Ningbo University. Y. Z. thanks the support from K. C. Wong Education Foundation, Hong Kong.

Supplementary material

11243_2018_301_MOESM1_ESM.doc (2.3 mb)
Supplementary material 1 (DOC 2344 kb)

References

  1. 1.
    Yagi M, Kaneko M (2001) Chem Rev 101:21–36CrossRefGoogle Scholar
  2. 2.
    Lewis NS, Nocera DG (2006) Proc Natl Acad Sci USA 103:15729–15737CrossRefGoogle Scholar
  3. 3.
    Barber J (2009) Chem Soc Rev 3:185–196CrossRefGoogle Scholar
  4. 4.
    Li T-T, Chen Y, Li F, Zhao W, Wang C, Lv X, Xu Q, Fu W (2014) Chem Eur J 20:8054–8061CrossRefGoogle Scholar
  5. 5.
    Li T-T, Qian J, Zheng Y-Q (2016) RSC Adv 6:77358–77365CrossRefGoogle Scholar
  6. 6.
    Meyer K, Ranocchiari M, van Bokhoven JA (2015) Energy Environ Sci 8:1923–1937CrossRefGoogle Scholar
  7. 7.
    Blakemore JD, Crabtree RH, Brudvig GW (2015) Chem Rev 115:12974–13005CrossRefGoogle Scholar
  8. 8.
    Karkas MD, Verho O, Johnston EV, Åkermark B (2014) Chem Rev 114:11863–12001CrossRefGoogle Scholar
  9. 9.
    Li T-T, Zheng Y-Q (2016) Dalton Trans 45:12685–12690CrossRefGoogle Scholar
  10. 10.
    Limburg B, Bouwman E, Bonnet S (2012) Coord Chem Rev 256:1451–1467CrossRefGoogle Scholar
  11. 11.
    Singh A, Spiccia L (2013) Coord Chem Rev 257:2607–2622CrossRefGoogle Scholar
  12. 12.
    Li F, Jiang Y, Zhang B, Huang F, Gao Y, Sun L (2012) Angew Chem Int Ed 51:2417–2420CrossRefGoogle Scholar
  13. 13.
    Sun L, Hammarström L, Åkermarka B, Styring S (2001) Chem Soc Rev 30:36–49CrossRefGoogle Scholar
  14. 14.
    Ashford DL, Stewart DJ, Glasson CR, Binstead RA, Harrison DP, Norris MR, Concepcion JJ, Fang Z, Templeton JL, Meyer TJ (2012) Inorg Chem 51:6428–6430CrossRefGoogle Scholar
  15. 15.
    Norris MR, Concepcion JJ, Harrison DP, Binstead RA, Ashford DL, Fang Z, Templeton JL, Meyer TJ (2013) J Am Chem Soc 135:2080–2083CrossRefGoogle Scholar
  16. 16.
    Kaveevivitchai N, Chitta R, Zong R, Ojaimi ME, Thummel RP (2012) J Am Chem Soc 134:10721–10724CrossRefGoogle Scholar
  17. 17.
    Kohler L, Kaveevivitchai N, Zong R, Thummel RP (2014) Inorg Chem 53:912–921CrossRefGoogle Scholar
  18. 18.
    Nair NV, Zhou R, Thummel RP (2017) Inorg Chim Acta 454:27–39CrossRefGoogle Scholar
  19. 19.
    Li T-T, Li F-M, Zhao W-L, Tian Y-H, Chen Y, Cai R, Fu W-F (2015) Inorg Chem 54:183–191CrossRefGoogle Scholar
  20. 20.
    Broomhead JA, Young CG (1982) Inorg Synth 21:127–128Google Scholar
  21. 21.
    Takeuchi KJ, Thompson MS, Pipes DW, Meyer TJ (1984) Inorg Chem 23:1845–1851CrossRefGoogle Scholar
  22. 22.
    Kaveevivitchai N, Zong R, Tseng H-W, Chitta R, Thummel RP (2012) Inorg Chem 51:2930–2939CrossRefGoogle Scholar
  23. 23.
    McClanahan SF, Dallinger RF, Holler FJ, Kincaid JR (1985) J Am Chem Soc 107:4853–4860CrossRefGoogle Scholar
  24. 24.
    Herrero C, Quaranta A, Fallahpour RA, Leibl W, Aukauloo A (2013) J Phys Chem C 117:9605–9612CrossRefGoogle Scholar
  25. 25.
    Swavey S, Fang Z, Brewer KJ (2002) Inorg Chem 41:2598–2607CrossRefGoogle Scholar
  26. 26.
    Hamelin O, Guillo P, Loiseau F, Boissonnet M-F, Menage S (2011) Inorg Chem 50:7952–7954CrossRefGoogle Scholar
  27. 27.
    Canterbury TR, Arachchige SM, Moore RB, Brewer KJ (2015) Angew Chem Int Ed 54:12819–12822CrossRefGoogle Scholar
  28. 28.
    Herrero C, Quaranta A, Leibl W, Rutherford AW, Aukauloo A (2011) Energy Environ Sci 4:2353–2365CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Research Center of Applied Solid State Chemistry, Chemistry Institute for Synthesis and Green ApplicationNingbo UniversityNingboPeople’s Republic of China

Personalised recommendations