Advertisement

Copper(II) complexes with pyridoxal dithiocarbazate and thiosemicarbazone ligands: crystal structure, spectroscopic analysis and cytotoxic activity

  • Claudia C. GattoEmail author
  • Marcio A. S. Chagas
  • Iariane J. Lima
  • Francyelli Mello Andrade
  • Hugo D. Silva
  • Gabrielly R. Abrantes
  • Elisângela P. S. Lacerda
Article
  • 58 Downloads

Abstract

The present study reports the synthesis and crystal structures of Cu(II) complexes with pyridoxal S-allyldithiocarbazate (H2L1) and pyridoxal thiosemicarbazones (H2L2 = pyridoxal-N4-phenyl-3-thiosemicarbazone and H2L3 = pyridoxal-N4-semicarbazone). The single-crystal X-ray study reveals that in all cases, the Schiff base coordinated tridentately through the ONS-donor atoms, resulting in distorted square planar coordination geometries with the copper atoms. The Cu(II) complexes with pyridoxal dithiocarbazate, [Cu(HL1)Cl]·H2O and [Cu(HL1)Br]·H2O, as well as three complexes with pyridoxal thiosemicarbazone, [Cu(HL2)Cl]·dmf, [Cu(HL2)Br]·H2O·dmf and [Cu(H2L3)Br]Br·H2O, were also characterized by spectroscopic and physical–chemical analyses. The cytotoxicity of the complexes toward two kinds of cancerous cells (Ehrlich and S-180 cells) was evaluated by an MTT assay. The complex [Cu(H2L3)Br]Br·H2O was selected to study both the cellular and molecular mechanisms underlying its promising cytotoxicity. The Hoechst 33342/PI dual-staining assay showed the typical apoptotic morphology of cancer cells, and the RT-qPCR analysis revealed that the expressions of Bax, Casp3, Casp8, Casp9 and TP53 were markedly increased in both the Ehrlich and S-180 cells exposed to 10 μM for 3 h. According to our results, this complex induces cell death through apoptosis, showing potential as a future drug against cancer.

Graphical abstract

Five stable copper(II) complexes with pyridoxal have been synthesized and their crystal structure has been studied. Spectroscopy experiments and cytotoxic assays against S-180 and Ehrlich cancer cell lines were performed and showed promising results as novel antitumor drugs.

Notes

Acknowledgements

We gratefully acknowledge the financial support of FAPDF, CAPES, CNPq and FINEP/CTINFRA.

Funding

Funding was provided by Fundação de Apoio à Pesquisa do Distrito Federal Funda de Apoio? Pesquisa do Distrito Federal (Grant No. 0193.001545/2017).

Supplementary material

11243_2018_299_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1274 kb)

References

  1. 1.
    Abu-Dief AM, Mohamed IMA (2015) Beni-Suef Univ J Basic Appl Sci 4:119–133CrossRefGoogle Scholar
  2. 2.
    Anacona JR, Noriega N, Camus J (2015) Spectrochim Acta Part A Mol Biomol Spectrosc 137:16–22CrossRefGoogle Scholar
  3. 3.
    Bagihalli GB, Avaji PG, Patil SA, Badami PS (2008) Eur J Med Chem 43:2639–2649CrossRefGoogle Scholar
  4. 4.
    Conner EM, Reglinski J, Smith WE, Zeitlin IJ (2017) Biometals 30:423–439CrossRefGoogle Scholar
  5. 5.
    Pelosi G, Bisceglie F, Bignami F, Ronzi P, Schiavone P, Re MC, Casoli C, Pilotti E (2010) J Med Chem 53:8765–8769CrossRefGoogle Scholar
  6. 6.
    Chang H-Q, Jia L, Xu J, Zhu T-F, Xu Z-Q, Chen R-H, Ma T-L, Wang Y, Wu W-N (2016) J Mol Struct 1106:366–372CrossRefGoogle Scholar
  7. 7.
    Vidovic D, Radulovic A, Jevtovic V (2011) Polyhedron 30:16–21CrossRefGoogle Scholar
  8. 8.
    Cui Z, Li Y, Ling Y, Huang J, Cui J, Wang R, Yang X (2010) Eur J Med Chem 45:5576–5584CrossRefGoogle Scholar
  9. 9.
    Ali MA, Tan AL, Mirza AH, Santos JH, Abdullah AHBH (2012) Transit Met Chem 37:651–659CrossRefGoogle Scholar
  10. 10.
    Zangrando E, Begum MS, Sheikh MC, Miyatake R, Hossain MM, Alam MM, Hasnat MA, Halim MA, Ahmed S, Rahman MN, Ghosh A (2017) Arab J Chem 10:172–184CrossRefGoogle Scholar
  11. 11.
    Casas JS, Couce MD, Sordo J (2012) Coord Chem Rev 256:3036–3062CrossRefGoogle Scholar
  12. 12.
    Begum MS, Zangrando E, Sheikh MC, Miyatake R, Howlader MBH, Rahman MN, Ghosh A (2017) Transit Met Chem 42:553–563CrossRefGoogle Scholar
  13. 13.
    Zangrando E, Islam MT, Islam MA-AAA, Sheikh MC, Tarafder MTH, Miyatake R, Zahan R, Hossain MA (2015) Inorg Chim Acta 427:278–284CrossRefGoogle Scholar
  14. 14.
    Jansson PJ, Sharpe PC, Bernhardt PV, Richardson DR (2010) J Med Chem 53:5759–5769CrossRefGoogle Scholar
  15. 15.
    Wang Y-T, Fang Y, Zhao M, Li M-X, Ji Y-M, Han Q-X (2017) MedChemComm 8:2125–2132CrossRefGoogle Scholar
  16. 16.
    Liu Y-H, Li A, Shao J, Xie C-Z, Song X-Q, Bao W-G, Xu J-Y (2016) Dalton Trans 45:8036–8049CrossRefGoogle Scholar
  17. 17.
    Park KC, Fouani L, Jansson PJ, Wooi D, Sahni S, Lane DJR, Palanimuthu D, Lok HC, Kovacevic Z, Huang MLH, Kalinowski DS, Richardson DR (2016) Metallomics 8:874–886CrossRefGoogle Scholar
  18. 18.
    Piri Z, Moradi-Shoeili Z, Assoud A (2017) Inorg Chem Commun 84:122–126CrossRefGoogle Scholar
  19. 19.
    Elsayed SA, Noufal AM, El-Hendawy AM (2017) J Mol Struct 1144:120–128CrossRefGoogle Scholar
  20. 20.
    Manikandan R, Vijayan P, Anitha P, Prakash G, Viswanathamurthi P, Butcher RJ, Velmurugan K, Nandhakumar R (2014) Inorg Chim Acta 421:80–90CrossRefGoogle Scholar
  21. 21.
    I.M.W. SMART and SAINT (1999) Area detector control integration software. Bruker Analytical X-ray Instrumensts, BillericaGoogle Scholar
  22. 22.
    Sheldrick GM (2008) Acta Crystallogr Sect A 64:112–122CrossRefGoogle Scholar
  23. 23.
    Sheldrick G (2015) Acta Crystallogr Sect C 71:3–8CrossRefGoogle Scholar
  24. 24.
    Farrugia LJ (1997) J Appl Crystallogr 30:565CrossRefGoogle Scholar
  25. 25.
    Putz H, Brandenburg GbR K. Crystal impact. Kreuzherrenstr. 102, 53227 Bonn, GermanyGoogle Scholar
  26. 26.
    de Lima AP, Pereira FdC, Vilanova-Costa CAST, Ribeiro AdSBB, Pavanin LA, Dos Santos WB, Silveira-Lacerda EdP (2010) J Biosci 35:371–378CrossRefGoogle Scholar
  27. 27.
    Bronikowska J, Szliszka E, Jaworska D, Czuba ZP, Krol W (2012) Molecules 17:6449–6464CrossRefGoogle Scholar
  28. 28.
    Syed Abdul Rahman SN, Abdul Wahab N, Abd Malek SN (2013) Evid Based Complement Alternat Med 257108:20Google Scholar
  29. 29.
    Rogalska A, Gajek A, Marczak A (2013) Cell Biol Int 37:1330–1339CrossRefGoogle Scholar
  30. 30.
    Lima AP, Pereira FC, Almeida MAP, Mello FMS, Pires WC, Pinto TM, Delella FK, Felisbino SL, Moreno V, Batista AA, Silveira-Lacerda EP (2014) PLoS ONE 9(10):e105865CrossRefGoogle Scholar
  31. 31.
    Hamid MHSA, Said ANAH, Mirza AH, Karim MR, Arifuzzaman M, Akbar Ali M, Bernhardt PV (2016) Inorg Chim Acta 453:742–750CrossRefGoogle Scholar
  32. 32.
    Haddad AZ, Cronin SP, Mashuta MS, Buchanan RM, Grapperhaus CA (2017) Inorg Chem 56:11254–11265CrossRefGoogle Scholar
  33. 33.
    Low ML, Maigre L, Tahir MIM, Tiekink ERT, Dorlet P, Guillot R, Ravoof TB, Rosli R, Pagès J-M, Policar C, Delsuc N, Crouse KA (2016) Eur J Med Chem 120:1–12CrossRefGoogle Scholar
  34. 34.
    Ravoof TBSA, Crouse KA, Tiekink ERT, Tahir MIM, Yusof ENM, Rosli R (2017) Polyhedron 133:383–392CrossRefGoogle Scholar
  35. 35.
    Leovac VM, Jevtovic V, Jovanović L, Bogdanović G (2005) J Serb Chem Soc 70(3):393–422CrossRefGoogle Scholar
  36. 36.
    Mohamed Subarkhan M, Prabhu RN, Raj Kumar R, Ramesh R (2016) RSC Adv 6:25082–25093CrossRefGoogle Scholar
  37. 37.
    Jakusch T, Kozma K, Enyedy ÉA, May NV, Roller A, Kowol CR, Keppler BK, Kiss T (2017) Inorg Chim Acta 472:243–253CrossRefGoogle Scholar
  38. 38.
    Ma Z-Y, Shao J, Bao W-G, Qiang Z-Y, Xu J-Y (2015) J Coord Chem 68:277–294CrossRefGoogle Scholar
  39. 39.
    Azarkish M, Akbari A, Sedaghat T, Simpson J (2018) J Mol Struct 1156:34–42CrossRefGoogle Scholar
  40. 40.
    Takjoo R, Centore R, Hakimi M, Ali Beyramabadi S, Morsali A (2011) Inorg Chim Acta 371:36–41CrossRefGoogle Scholar
  41. 41.
    Geary WJ (1971) Coord Chem Rev 7:81–122CrossRefGoogle Scholar
  42. 42.
    Gatto CC, Miguel PM, Almeida CM, Santiago PHO, Paier CRK, Pessoa C (2017) Transit Met Chem 42:503–508CrossRefGoogle Scholar
  43. 43.
    Dobrova A, Platzer S, Bacher F, Milunovic MNM, Dobrov A, Spengler G, Enyedy ÉA, Novitchi G, Arion VB (2016) Dalton Trans 45:13427–13439CrossRefGoogle Scholar
  44. 44.
    Milunovic MNM, Enyedy ÉA, Nagy NV, Kiss T, Trondl R, Jakupec MA, Keppler BK, Krachler R, Novitchi G, Arion VB (2012) Inorg Chem 51:9309–9321CrossRefGoogle Scholar
  45. 45.
    Bacher F, Enyedy ÉA, Nagy NV, Rockenbauer A, Bognár GM, Trondl R, Novak MS, Klapproth E, Kiss T, Arion VB (2013) Inorg Chem 52:8895–8908CrossRefGoogle Scholar
  46. 46.
    Mello-Andrade F, da Costa WL, Pires WC, Pereira FC, Cardoso CG, Lino-Junior RS, Irusta VRC, Carneiro CC, de Melo-Reis PR, Castro CH, Almeida MAP, Batista AA, Silveira-Lacerda EP (2017) Tumour Biol 39:1010428317695933CrossRefGoogle Scholar
  47. 47.
    Garibal J, Hollville É, Renouf B, Tétaud C, Wiels J (2010) Cell Signal 22:467–475CrossRefGoogle Scholar
  48. 48.
    Silva PP, Guerra W, Silveira JN, Ferreira AMdC, Bortolotto T, Fischer FL, Terenzi H, Neves A, Pereira-Maia EC (2011) Inorg Chem 50:6414–6424CrossRefGoogle Scholar
  49. 49.
    Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D (1993) Nature 366:701–704CrossRefGoogle Scholar
  50. 50.
    Porter AG, Janicke RU (1999) Cell Death Differ 6:99–104CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Claudia C. Gatto
    • 1
    Email author
  • Marcio A. S. Chagas
    • 1
  • Iariane J. Lima
    • 1
  • Francyelli Mello Andrade
    • 2
  • Hugo D. Silva
    • 2
    • 3
  • Gabrielly R. Abrantes
    • 2
  • Elisângela P. S. Lacerda
    • 2
  1. 1.Laboratory of Inorganic Synthesis and CrystallographyUniversity of Brasilia (IQ-UnB)BrasíliaBrazil
  2. 2.Laboratory of Molecular Genetics and CytogeneticsFederal University of GoiásGoiâniaBrazil
  3. 3.University Centre of Goiás (Centro Universitário de Goiás - Uni- ANHANGÜERA)GoiâniaBrazil

Personalised recommendations