Crystal structures and magnetic properties of nitroxide radical-coordinated copper(II) and cobalt(II) complexes

  • Yan-Li GaoEmail author
  • Katsuya Inoue


The crystal structures and magnetic properties of three coordination compounds constructed from various nitroxide radicals L and MII(hfac)2(H2O)2 building blocks (M = Cu or Co and hfac = hexafluoroacetylacetonato) are described. In [(1)Cu(hfac)2]n, 4, the radical ligand L is coordinated to the metal through the oxygen atom of the nitroxide group and oxygen atom of its hydroxyl group, leading to a one-dimensional chain system. In [(2)2Cu(hfac)2]n, 5, two hydroxyl oxygen atoms of the radical ligand are coordinated to the metal, and the CoII centers adopt distorted octahedral geometry to give a mononuclear compound. For [(L)Cu(hfac)2]n, 6, the oxygen atom of the nitroxide group and nitrogen atom of the amino group of L are coordinated to the metal, leading to a one-dimensional chain system. The magnetic susceptibility study of the copper coordination compound 4 revealed weak ferromagnetic interactions between the metal center and the organic radical. The cobalt coordination compounds 5 and 6 both show antiferromagnetic interactions.



This work was supported by a Grant-in-Aid for Scientific Research (S) (No. 25220803) “Toward a New Class Magnetism by Chemically-controlled Chirality,” Chirality Research Center (CResCent) in Hiroshima University (the MEXT program for promoting the enhancement of research universities, Japan) and JSPS Core-to-Core Program, A. Advanced Research Networks.

Supplementary material

11243_2018_297_MOESM1_ESM.docx (269 kb)
Supplementary material 1 (DOCX 269 kb)


  1. 1.
    Itoh K, Kinoshita M (eds) (2000) Molecular magnetism, new magnetic materials. Gordon Breach-Kodansha, TokyoGoogle Scholar
  2. 2.
    Blundell SJ, Pratt FL (2004) J Phys Condens Matter 16:R771–R828CrossRefGoogle Scholar
  3. 3.
    Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. Oxford University Press, OxfordCrossRefGoogle Scholar
  4. 4.
    Sorace L, Benelli C, Gatteschi D (2011) Chem Soc Rev 40:3092–3104CrossRefGoogle Scholar
  5. 5.
    Gutlich P, Garcia Y, Goodwin HA (2000) Chem Soc Rev 29:419–427CrossRefGoogle Scholar
  6. 6.
    Kurmoo M (2009) Chem Soc Rev 38:1353–1379CrossRefGoogle Scholar
  7. 7.
    Berliner LJ (ed) (1976) Spin labelling theory and applications, vols 1 and 2. Academic Press, New YorkGoogle Scholar
  8. 8.
    Nakatsuji S (2001) Adv Mater 13:1719–1724CrossRefGoogle Scholar
  9. 9.
    Nakatsuji S (2004) Chem Soc Rev 33:348–353CrossRefGoogle Scholar
  10. 10.
    Fujino H, Amano T, Akustu H, Yamada J, Nakatsuji S (2004) Chem Commun 20:2310–2311CrossRefGoogle Scholar
  11. 11.
    Naktode K, Kottalanka RK, Jana SK, Panda TK (2013) Z Anorg Allg Chem 639:999–1003CrossRefGoogle Scholar
  12. 12.
    Iwamoto S, Kai W, Isogai T, Saito T, Isogai A, Iwata T (2010) Polym Degrad Stab 95:1394–1398CrossRefGoogle Scholar
  13. 13.
    Moons H, Goovaerts E, Gubskaya VP, Nuretdinov IA, Corvajac C, Franco L (2011) Phys Chem Chem Phys 13:3942–3951CrossRefGoogle Scholar
  14. 14.
    Huras B, Zakrzewski J, Krawczyk M (2011) Heteroat Chem 22:137–147CrossRefGoogle Scholar
  15. 15.
    Bansal V, Delgado Y, Legault MD, Barletta G (2012) Molecules 17:1870–1882CrossRefGoogle Scholar
  16. 16.
    Wunderlich CH, Huber RG, Spitzer R, Liedl KR, Kloiber K, Kreutz C (2013) ACS Chem Biol 8:2697–2706CrossRefGoogle Scholar
  17. 17.
    Kinoshita H, Akutsu H, Yamada J, Nakatsuji S (2008) Inorg Chim Acta 361:4159–4163CrossRefGoogle Scholar
  18. 18.
    Kinoshita H, Akutsu H, Yamada J, Nakatsuji S (2006) Mendeleevsk Commun 16:305–306CrossRefGoogle Scholar
  19. 19.
    Boymel PM, Eaton GR, Eaton SS (1980) Inorg Chem 19:727–735CrossRefGoogle Scholar
  20. 20.
    Boymel PM, Braden GA, Eaton GR, Eaton SS (1980) Inorg Chem 19:735–739CrossRefGoogle Scholar
  21. 21.
    More JK, More KM, Eaton GR, Eaton SS (1984) J Am Chem Soc 106:5395–5402CrossRefGoogle Scholar
  22. 22.
    Anderson OP, Kuechler TC (1980) Inorg Chem 19:1417–1422CrossRefGoogle Scholar
  23. 23.
    Bencini A, Bencini C, Gatteschi D, Zanchini C (1984) J Am Chem Soc 106:5813–5818CrossRefGoogle Scholar
  24. 24.
    Benelli C, Gatteschi D, Carnegie DW, Carlin RL (1985) J Am Chem Soc 107:2560–2561CrossRefGoogle Scholar
  25. 25.
    Ratera I, Venciana J (2012) Chem Soc Rev 41:303–349CrossRefGoogle Scholar
  26. 26.
    Arends IWCE, Li YX, Ausan R, Sheldon RA (2006) Tetrahedron 62:6659–6665CrossRefGoogle Scholar
  27. 27.
    Yin W, Chu C, Lu Q, Tao J, Liang X, Liu R (2010) Adv Synth Catal 352:113–118CrossRefGoogle Scholar
  28. 28.
    Vostrikova KE (2008) Coord Chem Rev 252:1409–1419CrossRefGoogle Scholar
  29. 29.
    Montanari F, Quici S, Henry-Riyad H, Tidwell TT (2005) Encyclopedia of reagents for organic synthesis. Wiley-VC-H, WeinheimGoogle Scholar
  30. 30.
    Olszak TA, Grabowski MJ (1993) Acta Cryst Sect C C49:1722–1723CrossRefGoogle Scholar
  31. 31.
    Togashi K, Imachi R, Tomioka K, Tsuboi H, Ishida T, Nogami T, Takeda N, Ishikawa M (1996) Bull Chem Soc Jpn 69:2821–2830CrossRefGoogle Scholar
  32. 32.
    Allão RA, Jordão AK, Resende JALC, Cunha AC, Ferreira VF, Novak MA, Sangregorio C, Sorace L, Vaz MGF (2011) Dalton Trans 40:10843–10850CrossRefGoogle Scholar
  33. 33.
    Escobar LBL, Guedes GP, Soriano S, Speziali NL, Jordão AK, Cunha AC, Ferreira VF, Maxim C, Novak MA, Andruh M, Vaz MGF (2014) Inorg Chem 53:7508–7517CrossRefGoogle Scholar
  34. 34.
    Reis SG, del Águila-Sánchez MA, Guedes GP, Ferreira GB, Novak MA, Speziali NL, López-Ortiz F, Vaz MGF (2014) Dalton Trans 43:14889–14901CrossRefGoogle Scholar
  35. 35.
    Semmelhack MF, Schmid CR, Cortés DA, Chou CS (1984) J Am Chem Soc 106:3374–3376CrossRefGoogle Scholar
  36. 36.
    Briere R, Lemaire H, Rassat A (1965) A Bull Soc Chim Fr 11:3273–3283Google Scholar
  37. 37.
    Dutta S (2014) Pharm Chem J 48:448–451CrossRefGoogle Scholar
  38. 38.
    Boudreaux EA, Mulay LN (1976) Theory and application of molecular paramagnetism. Wiley, New YorkGoogle Scholar
  39. 39.
    SAINT-Plus, version 6.02, Bruker Analytical X-ray System, Madison, WI (1999)Google Scholar
  40. 40.
    Sheldrick GM (1996) SADABS—an empirical absorption correction program; Bruker Analytical X-ray Systems, Madison, WIGoogle Scholar
  41. 41.
    SHELXTL refinement program version 2016/6: Sheldrick GM (2015) Acta Crystallogr Sect C 71:3–8Google Scholar
  42. 42.
    Gao YL, Nishihara S, Inoue K (2018) CrystEngComm 20:2961–2967CrossRefGoogle Scholar
  43. 43.
    Kahn O (1993) Molecular magnetism. VCH Publishers, New YorkGoogle Scholar
  44. 44.
    Carlin RL (1986) Magnetochemistry. Springer, Berlin, pp 65–67CrossRefGoogle Scholar
  45. 45.
    Jia QX, Tian H, Yan L, Ma Y, Gao EQ (2010) Inorg Chim Acta 363:3750–3756CrossRefGoogle Scholar
  46. 46.
    Lloret F, Julve M, Cano J, Ruiz-García R, Pardo E (2008) Inorg Chim Acta 361:3432–3445CrossRefGoogle Scholar
  47. 47.
    Mabbs FE, Machin DJ (2008) Magnetism and transition metal complexes. Dover Publications, New YorkGoogle Scholar
  48. 48.
    Baskett M, Lahti PM, Paduan-Filho A, Oliveira NF (2005) Inorg Chem 44:6725–6735CrossRefGoogle Scholar
  49. 49.
    Caneschi A, Gatteschi D, Sessoli R, Rey P (1989) Acc Chem Res 22:392–398CrossRefGoogle Scholar
  50. 50.
    Titis J, Boca R (2011) Inorg Chem 50:11838–11845CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringYulin UniversityYulinChina
  2. 2.Department of ChemistryHiroshima UniversityHigashi-HiroshimaJapan
  3. 3.Center for Chiral ScienceHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations