Advertisement

On the Darcy–Brinkman–Boussinesq Flow in a Thin Channel with Irregularities

  • Eduard Marušić-Paloka
  • Igor PažaninEmail author
  • Marko Radulović
Article
  • 5 Downloads

Abstract

In this paper, we investigate the effects of a small boundary perturbation on the non-isothermal fluid flow through a thin channel filled with porous medium. Starting from the Darcy–Brinkman–Boussinesq system and employing asymptotic analysis, we derive a higher-order effective model given by the explicit formulae. To observe the effects of the boundary irregularities, we numerically visualize the asymptotic approximation for the temperature, whereas the justification and the order of accuracy of the model is provided by the theoretical error analysis.

Keywords

Boundary perturbation Thin domain Darcy–Brinkman–Boussinesq flow Asymptotic solution Error analysis 

Notes

Acknowledgements

The authors of this work have been supported by the Croatian Science Foundation (Scientific Project 2735: Asymptotic analysis of boundary value problems in continuum mechanics—AsAn). The authors would like to thank the referee for his/her helpful comments and suggestions that helped to improve our paper.

References

  1. Achdou, Y., Pironneau, O., Valentin, F.: Effective boundary conditions for laminar flows over periodic rough boundaries. J. Comput. Phys. 147, 187–218 (1998)CrossRefGoogle Scholar
  2. Ahn, J., Choi, J.-I., Kang, K.: Analysis of convective heat transfer in channel flow with arbitrary rough surface. Z. Angew. Math. Mech. 99, 1–19 (2019)CrossRefGoogle Scholar
  3. Allaire, G.: Homogenization of the Navier–Stokes equations in open sets perforated with tiny holes. I Abstract framework, a volume distribution of holes. Arch. Ration. Mech. Anal. 113, 209–259 (1991)CrossRefGoogle Scholar
  4. Ammari, H., Kang, H., Lee, H., Lim, J.: Boundary perturbations due to the presence of small linear cracks in an elastic body. J. Elast. 113, 75–91 (2013)CrossRefGoogle Scholar
  5. Beneš, M., Pažanin, I.: Homogenization of degenerate coupled fluid flows and heat transport through porous media. J. Math. Anal. Appl. 446, 165–192 (2017)CrossRefGoogle Scholar
  6. Beneš, M., Pažanin, I.: Rigorous derivation of the effective model describing a non-isothermal fluid flow in a vertical pipe filled with porous medium. Contin. Mech. Thermodyn. 30, 301–317 (2018)CrossRefGoogle Scholar
  7. Beretta, E., Francini, E.: An asymptotic formula for the displacement field in the presence of thin elastic inhomogeneities. SIAM J. Math. Anal. 38, 1249–1261 (2006)CrossRefGoogle Scholar
  8. Bernardi, C., Métivet, B., Pernaud-Thomas, B.: Couplage des équations de Navier–Stokes et de la chaleur: le mod\(\grave{e}\)le et son approximation par éléments finis. Math. Mod. Numer. Anal. 29, 871–921 (1995)CrossRefGoogle Scholar
  9. Bonnivard, M., Pažanin, I., Suárez-Grau, F.J.: Effects of rough boundary and nonzero boundary conditions on the lubrication process with micropolar fluid. Eur. J. Mech. B Fluids 72, 501–518 (2018)CrossRefGoogle Scholar
  10. Boussinesq, J.: Théorie Analytique de la Chaleur, vol. 2. Gauthier-Villars, Paris (1903)Google Scholar
  11. Bresch, D., Choquet, C., Chupin, I., Colin, T., Gisclon, M.: Roughness-induced effect at main order on the Reynolds approximation. SIAM Multiscale Model. Simul. 8, 997–1017 (2010)CrossRefGoogle Scholar
  12. Brinkman, H.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1, 27–34 (1947)Google Scholar
  13. Celik, H., Mobedi, M.: Visualization of heat flow in a vertical channel with fully developed mixed convection. Int. Commun. Heat. Mass 39, 1253–1264 (2012)CrossRefGoogle Scholar
  14. Chang, W.J., Chang, W.L.: Mixed convection in a vertical tube partially filled with porous medium. Numer. Heat. Transf. A Appl. 28, 739–754 (1995)CrossRefGoogle Scholar
  15. Conca, C., Murat, F., Pironneau, O.: The Stokes and Navier–Stokes equations with boundary conditions involving the pressure. Jpn. J. Math. 20, 263–318 (1994)CrossRefGoogle Scholar
  16. Darcy, H.: Les Fontaines Publiques de la ville de Dijon. Victor Darmon, Paris (1856)Google Scholar
  17. Ekneligoda, T.C., Zimmerman, R.W.: Boundary perturbation solution for nearly circular holes and rigid inclusions in an infinite elastic medium. J. Appl. Mech. 75, 011015 (2008)CrossRefGoogle Scholar
  18. Fabrie, P.: Solution fortes et comportement asymptotique pour un modéle de convestion naturelle en milieu poroeux. Acta Appl. Math. 7, 49–77 (1986)CrossRefGoogle Scholar
  19. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. I. Springer, Berlin (1994)Google Scholar
  20. Gray, D.D., Ogretim, E., Bromhal, G.S.: Darcy flow in a wavy channel filled with a porous medium. Transp. Porous Med. 98, 743–753 (2013)CrossRefGoogle Scholar
  21. Hooman, K., Ranjbar-Kani, A.A.: A perturbation based analysis to investigate forced convection in a porous saturated tube. J. Comput. Appl. Math. 162, 411–419 (2004)CrossRefGoogle Scholar
  22. Jäger, W., Mikelić, A.: On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differ. Equ. 170, 96–122 (2001)CrossRefGoogle Scholar
  23. Jamal-Abad, M.T., Saedodin, S., Aminy, M.: Variable conductivity in forced convection for a tube filled with porus media: a perturbation solution. Ain Shams Eng. J. 9, 689–696 (2018)CrossRefGoogle Scholar
  24. Kelliher, J.P., Temam, R., Wang, X.: Boundary layer associated with the Darcy–Brinkman–Boussinesq model for convection porous media. Physica D 240, 619–628 (2011)CrossRefGoogle Scholar
  25. Kumar, A., Bera, P., Kumar, J.: Non-Darcy mixed convection in a vertical pipe filled with porous medium. Int. J. Therm. Sci. 50, 725–735 (2011)CrossRefGoogle Scholar
  26. Levy, T.: Fluid flow through an array of fixed particles. Int. J. Eng. Sci. 21, 11–23 (1983)CrossRefGoogle Scholar
  27. Marušić-Paloka, E.: Effects of small boundary perturbation on the flow of viscous fluid. ZAMM J. Appl. Math. Mech. 96, 1103–1118 (2016)CrossRefGoogle Scholar
  28. Marušić-Paloka, E., Pažanin, I.: Non-isothermal fluid flow through a thin pipe with cooling. Appl. Anal. 88, 495–515 (2009)CrossRefGoogle Scholar
  29. Marušić-Paloka, E., Pažanin, I.: On the Darcy–Brinkman flow through a channel with slightly perturbed boundary. Transp. Porous Med. 116, 27–44 (2017)CrossRefGoogle Scholar
  30. Marušić-Paloka, E., Pažanin, I., Marušić, S.: Comparison between Darcy and Brinkman laws in a fracture. Appl. Math. Comput. 218, 7538–7545 (2012)Google Scholar
  31. Marušić-Paloka, E., Pažanin, I., Radulović, M.: Flow of a micropolar fluid through a channel with small boundary perturbation. Z. Naturforsch 71(7), 607–619 (2016)CrossRefGoogle Scholar
  32. Ng, C.-O., Wang, C.Y.: Darcy–Brinkman flow through a corrugated channel. Transp. Porous Media 85, 605–618 (2010)CrossRefGoogle Scholar
  33. Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (2017)CrossRefGoogle Scholar
  34. Pažanin, I., Siddheshwar, P.G.: Analysis of the Laminar Newtonian fluid flow through a thin fracture modelled as fluid-saturated sparsely packed porous medium. Z. Naturforsch. A 71, 253–259 (2017)CrossRefGoogle Scholar
  35. Pažanin, I., Suárez-Grau, F.J.: Analysis of the thin film flow in a rough thin domain filled with micropolar fluid. Comput. Math. Appl. 68, 1915–1932 (2014)CrossRefGoogle Scholar
  36. Sisavath, S., Jing, X., Zimmerman, R.W.: Creeping flow through a pipe of varying radius. Phys. Fluids 12, 2762–2772 (2001)CrossRefGoogle Scholar
  37. Yu, L.H., Wang, C.Y.: Darcy–Brinkman flow through a bumpy channel. Transp. Porous Med. 97, 281–294 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceUniversity of ZagrebZagrebCroatia

Personalised recommendations