Advertisement

An Analytical Model for Fluid Imbibition in Organic Nanopores

  • Shu YangEmail author
Article
  • 77 Downloads

Abstract

Estimating the fluid imbibition flow in natural system composed of nanopores is challenging due to the strong fluid/rock molecular scale interaction and the invalidation of the macroscopic thermodynamics treatment. We develop an analytical model for Lennard-Jones fluid imbibition into an organic nanopore considering the phase transition and fluid/rock intermolecular interactions. In addition, we apply the proposed model on octane molecules imbibition into 1–10 nm slit-shape graphite nanopores under the standard and shale reservoir condition. Predicted velocity and density profiles of 2 nm model at the standard condition show that octane molecules first imbibe as vapor phase at around 200–300 m/s and form adsorbed layers near the pore wall. Velocity and density profiles are compared with the molecular dynamic simulation results. Calculated mean velocities of the analytical model and simulation are around 103–104 of those predicted by classical models, which are similar with previous experimental results. Reservoir condition results show octane can fast flow only when the driving pressure is greater than 0.12 MPa when the initial reservoir pressure is 5.72 MPa. Particularly, the impact of the fluid phase transition on the imbibition rate is significant in organic nanopores.

Keywords

Imbibition Adsorption Nanopore Phase transition 

Notes

Acknowledgements

The authors thank National Natural Science Foundation of China and National Major Scientific and Technological Special Project (2016ZX05048-003) for funding this study.

References

  1. Barrow, G.M.: Physical Chemistry. McGraw-Hill, New York (1973)Google Scholar
  2. Cai, J., Yu, B.: A discussion of the effect of tortuosity on the capillary imbibition in porous media. Transp. Porous Media 89(2), 251–263 (2011)CrossRefGoogle Scholar
  3. Cai, J., Perfect, E., Cheng, C.L., Hu, X.: Generalized modeling of spontaneous imbibition based on Hagen–Poiseuille flow in tortuous capillaries with variably shaped apertures. Langmuir 30(18), 5142–5151 (2014)CrossRefGoogle Scholar
  4. Cristancho, D., Akkutlu, I.Y., Wang, Y., Criscenti, L.J.: Shale gas storage in kerogen nanopores with surface heterogeneities. Appl. Geochem. 84, 1–10 (2017)CrossRefGoogle Scholar
  5. Fathi, E., Akkutlu, I.Y.: Multi-component gas transport and adsorption effects during CO2, injection and enhanced shale gas recovery. Int. J. Coal Geol. 123(2), 52–61 (2014)CrossRefGoogle Scholar
  6. Gruener, S., Hofmann, T., Wallacher, D., Kityk, A.V., Huber, P.: Capillary rise of water in hydrophilic nanopores. Phys. Rev. E 79(6), 067301 (2009)CrossRefGoogle Scholar
  7. Habibi, A., Dehghanpour, H., Binazadeh, M., Bryan, D., Uswak, G.: Advances in understanding wettability of tight oil formations: a Montney case study. SPE Reserv. Eval. Eng. 19(04), 583–603 (2016)CrossRefGoogle Scholar
  8. Hummer, G., Garde, S., García, A.E., Pohorille, A., Pratt, L.R.: An information theory model of hydrophobic interactions. Proc. Natl. Acad. Sci. 93(17), 8951–8955 (1996)CrossRefGoogle Scholar
  9. Jin, Z., Firoozabadi, A.: Flow of methane in shale nanopores at low and high pressure by molecular dynamics simulations. J. Chem. Phys. 143(10), 064705 (2015)CrossRefGoogle Scholar
  10. Jin, Z., Firoozabadi, A.: Phase behavior and flow in shale nanopores from molecular simulations. Fluid Phase Equilib. 430, 156–168 (2016)CrossRefGoogle Scholar
  11. Lan, Q., Dehghanpour, H., Wood, J., Sanei, H.: Wettability of the Montney tight gas formation. SPE Reserv. Eval. Eng. 18, 417–431 (2015)CrossRefGoogle Scholar
  12. Lastoskie, C., Gubbins, K.E., Quirke, N.: Pore size heterogeneity and the carbon slit pore: a density functional theory model. Langmuir 9(10), 2693–2702 (1993)CrossRefGoogle Scholar
  13. Li, Z., Jin, Z., Firoozabadi, A.: Phase behavior and adsorption of pure substances and mixtures and characterization in nanopore structures by density functional theory. SPE J. 19(06), 1–096 (2014)CrossRefGoogle Scholar
  14. Liu, C., Li, Z.: On the validity of the navier-stokes equations for nanoscale liquid flows: the role of channel size. AIP Adv. 1(3), 977 (2011)CrossRefGoogle Scholar
  15. Majumder, M., Chopra, N., Andrews, R., Hinds, B.J.: Enhanced flow in carbon nanotubes. Nature 438(7064), 44 (2005a)CrossRefGoogle Scholar
  16. Majumder, M., Chopra, N., Hinds, B.J.: Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes. J. Am. Chem. Soc. 127(25), 9062 (2005b)CrossRefGoogle Scholar
  17. Martin, M.G., Siepmann, J.I.: Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J. Phys. Chem. B 102(14), 2569–2577 (1998)CrossRefGoogle Scholar
  18. McQuarrie, D.A.: Statistical Mechanics, p. 3. Harper & Row, New York (1976)Google Scholar
  19. Qin, X., Yuan, Q., Zhao, Y., Xie, S., Liu, Z.: Measurement of the rate of water translocation through carbon nanotubes. Nano Lett. 11(5), 2173–2177 (2011)CrossRefGoogle Scholar
  20. Ravikovitch, P.I., Vishnyakov, A., Neimark, A.V.: Density functional theories and molecular simulations of adsorption and phase transitions in nanopores. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 64(1), 011602 (2001)CrossRefGoogle Scholar
  21. Riewchotisakul, S., Akkutlu, I.Y.: Adsorption-enhanced transport of hydrocarbons in organic nanopores. SPE J. 21(06), 1–960 (2016)CrossRefGoogle Scholar
  22. Rossi, M.P., Ye, H., Gogotsi, Y., Babu, S., Ndungu, P., Bradley, J.C.: Environmental scanning electron microscopy study of water in carbon nanopipes. Nano Lett. 4(5), 989–993 (2004)CrossRefGoogle Scholar
  23. Rowlinson, B.S., Widom, B.: Molecular Theory of Capillarity. Clarendon Press, Oxford (1982)Google Scholar
  24. Saif, T., Lin, Q., Singh, K., Bijeljic, B., Blunt, M.J.: Dynamic imaging of oil shale pyrolysis using synchrotron X-ray microtomography. Geophys. Res. Lett. 43(13), 6799–6807 (2016)CrossRefGoogle Scholar
  25. Sokhan, V.P., Nicholson, D., Quirke, N.: Fluid flow in nanopores: an examination of hydrodynamic boundary conditions. J. Chem. Phys. 115(8), 3878–3887 (2001)CrossRefGoogle Scholar
  26. Supple, S., Quirke, N.: Molecular dynamics of transient oil flows in nanopores I: imbibition speeds for single wall carbon nanotubes. J. Chem. Phys. 121(17), 8571–8579 (2004)CrossRefGoogle Scholar
  27. Supple, S., Quirke, N.: Molecular dynamics of transient oil flows in nanopores. II: Density profiles and molecular structure for decane in carbon nanotubes. J. Chem. Phys. 122(10), 273 (2005)CrossRefGoogle Scholar
  28. Tarazona, P.: Free-energy density functional for hard spheres. Phys. Rev. A 31(4), 2672 (1985)CrossRefGoogle Scholar
  29. Tee, L.S., Gotoh, S., Stewart, W.E.: Molecular parameters for normal fluids. Lennard-Jones 12-6 Potential. Ind. Eng. Chem. Fundam. 5(3), 356–363 (1966)CrossRefGoogle Scholar
  30. Van der Ploeg, P., Berendsen, H.J.C.: Molecular dynamics simulation of a bilayer membrane. J. Chem. Phys. 76(6), 3271–3276 (1982)CrossRefGoogle Scholar
  31. Wang, L., Neeves, K., Yin, X., Ozkan, E.: Experimental study and modeling of the effect of pore size distribution on hydrocarbon phase behavior in nanopores. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2014)Google Scholar
  32. Wang, S., Javadpour, F., Feng, Q.: Molecular dynamics simulations of oil transport through inorganic nanopores in shale. Fuel 171, 74–86 (2016)CrossRefGoogle Scholar
  33. Whitby, M., Quirke, N.: Fluid flow in carbon nanotubes and nanopipes. Nat. Nanotechnol. 2(2), 87–94 (2007)CrossRefGoogle Scholar
  34. Yang, S., Dehghanpour, H., Binazadeh, M., Dong, P.: A molecular dynamics explanation for fast imbibition of oil in organic tight rocks. Fuel 190, 409–419 (2016)CrossRefGoogle Scholar
  35. Yassin, M.R., Dehghanpour, H., Wood, J., Lan, Q.: A theory for relative permeability of unconventional rocks with dual-wettability pore network. SPE J. 21, 1–970 (2016)CrossRefGoogle Scholar
  36. Zeng, M., Mi, J., Zhong, C.: Wetting behavior of spherical nanoparticles at a vapor-liquid interface: a density functional theory study. Phys. Chem. Chem. Phys. 13(9), 3932–3941 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.EOR CenterSINOPEC Exploration and Production Research InstituteBeijingChina

Personalised recommendations