Advertisement

Investigation of Stress Field and Fracture Development During Shale Maturation Using Analog Rock Systems

  • B. VegaEmail author
  • J. Yang
  • H. Tchelepi
  • A. R. Kovscek
Article
  • 12 Downloads

Abstract

The emergence of hydrocarbons within shale as a major recoverable resource has sparked interest in fluid transport through these tight mudstones. Recent studies suggest the importance to recovery of microfracture networks that connect localized zones with large organic content to the inorganic matrix. This paper presents a joint modeling and experimental study to examine the onset, formation, and evolution of microfracture networks as shale matures. Both the stress field and fractures are simulated and imaged. A novel laboratory-scale, phase-field fracture propagation model was developed to characterize the material failure mechanisms that play a significant role during the shale maturation process. The numerical model developed consists of coupled solid deformation, pore pressure, and fracture propagation mechanisms. Benchmark tests were conducted to validate model accuracy. Laboratory-grade gelatins with varying Young’s modulus were used as scaled-rock analogs in a two-dimensional Hele-Shaw cell apparatus. Yeast within the gelatin generates gas in a fashion analogous to hydrocarbon formation as shale matures. These setups allow study and visualization of host rock elastic-brittle fracture and fracture network propagation mechanisms. The experimental setup was fitted to utilize photoelasticity principles coupled with birefringence properties of gelatin to explore visually the stress field of the gelatin as the fracture network developed. Stress optics image analysis and linear elastic fracture mechanics (LEFM) principles for crack propagation were used to monitor fracture growth for each gelatin type. Observed and simulated responses suggest gas diffusion within and deformation of the gelatin matrix as predominant mechanisms for energy dissipation depending on gelatin strength. LEFM, an experimental estimation of principal stress development with fracture growth, at different stages was determined for each gelatin rheology. The interplay of gas diffusion and material deformation determines the resulting frequency and pattern of fractures. Results correlate with Young’s modulus. Experimental and computed stress fields reveal that fractures resulting from internal gas generation are similar to, but not identical to, type 1 opening mode.

Keywords

Shale rock maturation Analog rock systems Phase-field fracture propagation model Stress field Gelatin 

List of Symbols

Α

Cross-sectional area (m2)

b

Biot coefficient (1)

D

Diffusion coefficient (m2/s)

Ε

Francfort–Marigo energy functional (J)

Εm

Young’s modulus (Pa)

e

Infinitesimal strain tensor

fσ

Stress-fringe factor (N/mm/fringe)

Gc

Critical energy release rate (J/m2)

k

Permeability tensor (m2)

K

Bulk modulus (Pa)

Kdry

Drained bulk modulus

Kc

Fracture toughness \(( {\text{Pa}}\sqrt {\text{m}} )\)

Kd

Darcy permeability (nD)

KI

Stress-intensity factor \(( {\text{Pa}}\sqrt {\text{m}} )\)

h

Sample thickness (m)

Hc

Length of host matrix (m)

Hi

Length of fracture i (m)

l

Fracture length (m)

L

Length of sample (m)

M

Biot modulus (Pa)

N

Fringe order

OL

Ordinary light

Pe

Elastic pressure (Pa)

Pp

Propagation pressure (Pa)

PL

Polarized Light

q

Fluid source term (kg/s)

r

Radius from crack tip to stress element (m)

Re

Reynold’s number

Sav

Average fracture spacing (m)

Wc

Width of host matrix (m)

u

Displacement field (m)

uf

Fracture velocity (m/s)

Vi

Dead volume (m3)

w

Fracture opening (m)

wf

Fracture thickness (m)

y

Fracture width (m)

αd

Pulse decay semilog slope (s−1)

β

Gas compressibility (Pa−1)

ϵ

Length-scale parameter (m)

φ

Phase-field variable (1)

Φ

Strain energy density (J)

γs

Surface energy (J s−1)

Γ

Crack surface area (m2)

ρ

Density (kg/m3)

η

Viscosity (Pa s)

σ

Biot effective stress (Pa)

σi

Principal stress in i direction (Pa)

σtotal

Total stress (Pa)

ϑ

Angle of stress element (°)

ϑss

Steady-state time (s)

ν

Poisson ratio

Notes

Acknowledgements

This work was supported by TOTAL S.A. through the STEMS project, a research collaboration between TOTAL S.A. and Stanford University. BV, JY, and ARK acknowledge support as part of the Center for Mechanistic Control of Unconventional Formations (CMC-UF), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science under DOE (BES) Award DE-SC0019165. Additionally, we thank the Industrial Affiliates of SUPRI-A and SUPRI-B for their ancillary support.

References

  1. Allix, P., Burnham, A., Fowler, T., Herron, M., Kleinberg, R., Symington, B.: Coaxing oil from shale. Oilfield Rev. 22(4), 4–15 (2011)Google Scholar
  2. Ambrosio, L., Tortorelli, V.M.: Approximation of functional depending on jumps by elliptic functional via t-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)CrossRefGoogle Scholar
  3. American Association of Petroleum Geologists (AAPG). Kerogen; AAPG: Tulsa, OK, March 3, 2016. http://wiki.aapg.org/Kerogen
  4. Amor, H., Marigo, J.J., Maurini, C.: Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J. Mech. Phys. Solids 57(8), 1209–1229 (2009)CrossRefGoogle Scholar
  5. Anderson, E.R.: Propagation and Interaction of Pressurized Cracks in Photoelastic Gelatin. MS Thesis, Stanford University, Stanford, CA (1978)Google Scholar
  6. Arvanitoyannis, I., Psomidau, E., Nakayama, A., Aiba, S., Yamamoto, N.: Edible films made from gelatin, soluble starch, and polyols, Part 3. Food Chem. 60(4), 593–604 (1997)CrossRefGoogle Scholar
  7. Baek, T.H., Kim, M.S., Hong, D.P.: Fringe analysis for photoelasticity using image processing techniques. Int. J. Softw. Eng. Appl. 8(4), 91–102 (2014).  https://doi.org/10.14257/ijseia.2014.8.4.11 CrossRefGoogle Scholar
  8. Bangerth, W., Hartmann, R., Kanschat, G.: A general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33(4), 24 (2007)CrossRefGoogle Scholar
  9. Brace, W., Walsh, J., Frangos, W.: Permeability of granite under high pressure. J. Geophys. Res. 73(6), 2225–2236 (1968)CrossRefGoogle Scholar
  10. Berg, R.R., Gangi, A.F.: Primary migration by oil-generation microfracturing in low-permeability source rocks: application to the Austin Chalk, Texas. AAPG Bull. 83, 727–756 (1999)Google Scholar
  11. Bloom, O.T.: U.S. Patent No. 1,540,979. Washington, DC: US Patent and Trademark Office (1925)Google Scholar
  12. Bochev, P.B., Dohrmann, C.R., Gunzburger, M.D.: Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J. Numer. Anal. 44(1), 82–101 (2006)CrossRefGoogle Scholar
  13. Borja, R.I.: Plasticity: Modeling & Computation. Springer (2013)Google Scholar
  14. Bostrom, N., Leu, G., Pomerantz, D., Machlus, M., Herron, M., Kleinberg, R.: Realistic oil shale pyrolysis programs: kinetics and quantitative analysis. Oil Shale Symposium (2009)Google Scholar
  15. Bourdin, B., Francfort, G.A., Marigo, J.J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48(4), 797–826 (2000)CrossRefGoogle Scholar
  16. Bourdin, B., Francfort, G.A., Marigo, J.J.: The variational approach to fracture. J. Elast. 91(1), 5–148 (2008)CrossRefGoogle Scholar
  17. Bourdin, B., Chukwudozie, C.P., Yoshioka, K.: A variational approach to the numerical simulation of hydraulic fracturing. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2012)Google Scholar
  18. Burnham, A.K., Singleton, M.F.: High pressure pyrolysis of green river oil shale. In: Geochemistry and Chemistry of Oil Shales, ACS Symposium Series 230. American Chemical Society (1983)Google Scholar
  19. Burnham, A.K.: Chemistry and kinetics of oil shale retorting, in oil shale: a solution to the liquid fuel dilemma. In: ACS Symposium Series 1032, American Chemical Society (2010)Google Scholar
  20. Capuano, R.M.: Evidence of fluid flow in microcracks in geopressured shales. AAPG Bull. 77, 1303–1314 (1993)Google Scholar
  21. Charmette, C., Sanchez, J., Gramain, Ph, Rudatsikira, A.: Gas transport properties of poly(ethylene oxide-co-epichlorohydrin) membranes. J. Membr. Sci. 230, 161–169 (2004).  https://doi.org/10.1016/j.memsci.2003.10.043 CrossRefGoogle Scholar
  22. Chen, Z., Bunger, A.P., Zhang, X., Jeffrey, R.G.: Cohesive zone finite element-based modelling of hydraulic fractures. Acta Mech. Solida Sin. 22(5), 443–452 (2009)CrossRefGoogle Scholar
  23. Chukwudozie, C., Bourdin, B., Yoshioka, K.: A variational phase-field model for hydraulic fracturing in porous media. Comput. Methods Appl. Mech. Eng. 347, 957–982 (2019)CrossRefGoogle Scholar
  24. Dally, J., Riley, W.: Experimental Stress Analysis, 3rd edn. McGraw-Hill, New York (1991)Google Scholar
  25. Di Giuseppe, E., Funiciello, F., Corbi, F., Ranalli, G., Mojoli, G.: Gelatins as rock analogs: a systematic study of their rheological and physical properties. Tectonophysics 473(3–4), 391–403 (2009)CrossRefGoogle Scholar
  26. du Rouchet, J.: Stress fields, a key to oil migration. AAPG Bull. 65, 445–459 (1981)Google Scholar
  27. Erdogan, F., Sih, G.C.: On the crack extension in plates under plane loading and transverse shear. J. Basic Eng. 85(4), 519–525 (1963)CrossRefGoogle Scholar
  28. Glatz, G., Castanier, L.M., Kovscek, A.R.: Visualization and quantification of thermally induced porosity alteration of immature source rock using X-ray computed tomography. Energy Fuels 30(10), 8141–8149 (2016).  https://doi.org/10.1021/acs.energyfuels.6b01430 CrossRefGoogle Scholar
  29. Glatz, G., Lapene, A., Castanier, L.M., Kovscek, A.R.: An experimental platform for triaxial high-pressure/high-temperature testing of rocks using computed tomography. Rev. Sci. Instrum. 89, 045101 (2018).  https://doi.org/10.1063/1.5030204 CrossRefGoogle Scholar
  30. Griffith, A.: The phenomena of rupture and flow in solids. Royal Society of London. Series A. 221, 163–198 (1921)CrossRefGoogle Scholar
  31. Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)CrossRefGoogle Scholar
  32. Heister, T., Wheeler, M.F., Wick, T.: A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach. Comput. Methods Appl. Mech. Eng. 290, 466–495 (2015)CrossRefGoogle Scholar
  33. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth newton method. SIAM J. Optim. 13(3), 865–888 (2002)CrossRefGoogle Scholar
  34. Hubbert, M.: Theory of scale models as applied to the study of geologic structures. Bull. Geol. Soc. Am. 48(10), 1459–1517 (1937)CrossRefGoogle Scholar
  35. Irwin, G.: Fracture dynamics. Fracturing of Metals, 152 (1948)Google Scholar
  36. Ji, S.H., Park, Y.J., Lee, K.K.: Influence of fracture connectivity and characterization level on the uncertainty of the equivalent permeability in statistically conceptualized fracture networks. Transp. Porous Media 87(2), 385–395 (2011)CrossRefGoogle Scholar
  37. Jiang, J., Yang, J.: Coupled fluid flow and geomechanics modeling of stress-sensitive production behavior in fractured shale gas reservoirs. Int. J. Rock Mech. Min. Sci. 101, 1–12 (2018)CrossRefGoogle Scholar
  38. Ju, Y., Zheng, Z., Xie, H., Wang, L., He, K.: Experimental visualization methods for three-dimensional stress fields of porous solids. Exp Tech. 41, 331–344 (2017)CrossRefGoogle Scholar
  39. Kavanagh, J.L., Menand, T., Sparks, R.S.J.: An experimental investigation of sill formation and propagation in layered elastic media. Earth Planet. Sci. Lett. 245, 799–813 (2006)CrossRefGoogle Scholar
  40. Kavanagh, J.L., Menand, T., Daniels, K.A.: Gelatine as a crustal analogue: determining elastic properties for modelling magmatic intrusions. Tectonophysics 582, 101–111 (2013)CrossRefGoogle Scholar
  41. Kavanagh, J.L., Boutelier, D., Cruden, A.R.: The mechanics of sill inception, propagation and growth: experimental evidence for rapid reduction in magmatic overpressure. Earth Planet. Sci. Lett. 421, 117–128 (2015)CrossRefGoogle Scholar
  42. Kobchenko, M., Hafver, A., Jettestuen, E., Renard, F., Galland, O., Jamtveit, B., Meakin, P., Dysthe, D.K.: Drainage fracture networks in elastic solids with internal fluid generation. Europhys. Lett. 102, 66002 (2013)CrossRefGoogle Scholar
  43. Kobchenko, M., Hafver, A., Jettestuen, E., Renard, F., Galland, O., Jamtveit, B., Meakin, P., Dysthe, D.K.: Evolution of a fracture network in an elastic medium with internal fluid generation and expulsion. Phys. Rev. E 90(052801), 1–9 (2014)Google Scholar
  44. Lash, G.G., Engelder, T.: An analysis of horizontal microcracking during catagenesis: example from Catskill delta complex. AAPG Bulletin 89, 1433–1449 (2005)CrossRefGoogle Scholar
  45. Le-Doan, T.-V., Bostrom, N.W., Burnham, A.K., Kleinberg, R.L., Pomerantz, A.E., Allix, P.: Experimental study of green river oil shale pyrolisis. SPE paper 168715 presented at the Unconventional Resources Technology Conference (URTeC) held in Denver, CO. Aug. 12-14 (2013)Google Scholar
  46. Lee, S., Mikelic, A., Wheeler, M.F., Wick, T.: Phase-field modeling of proppant-filled fractures in a poroelastic medium. Comput. Methods Appl. Mech. Eng. 312, 509–541 (2016)CrossRefGoogle Scholar
  47. Lee, S., Mikelic, A., Wheeler, M.F., Wick, T.: Phase-field modeling of two phase fluid filled fractures in a poroelastic medium. Multisc. Model. Simul. 16(4), 1542–1580 (2018)CrossRefGoogle Scholar
  48. Li, F.: Study of Stress Measurement Using Polariscope. PhD Thesis, Georgia Institute of Technology, Atlanta, GA (2010)Google Scholar
  49. Mauthe, S., Miehe, C.: Hydraulic fracture in poro-hydro-elastic media. Mech. Res. Commun. 80, 69–83 (2017)CrossRefGoogle Scholar
  50. Márquez, X.M., Mountjoy, E.W.: Microcracks due to overpressures caused by thermal cracking in well-sealed Upper Devonian reservoirs, deep Alberta basin. AAPG Bull. 80, 570–588 (1996)Google Scholar
  51. McCarthy, K., Rojas, K., Niemann, M., Palmowski, D., Peters, K., Stankiewicz, A.: Basic petroleum geochemistry for source rock evaluation. Oilfield Rev. 23, 2 (2011)Google Scholar
  52. Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field fe implementations. Int. J. Numer. Methods Eng. 83(10), 1273–1311 (2010a)CrossRefGoogle Scholar
  53. Miehe, C., Hofacker, M., Welschinger, F.: A phase-field model for rate independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199(45), 2765–2778 (2010b)CrossRefGoogle Scholar
  54. Mohammadnejad, T., Andrade, J.E.: Numerical modeling of hydraulic fracture propagation, closure and reopening using xfem with application to in situ stress estimation. Int. J. Numer. Anal. Methods Geomech. 40(15), 2033–2060 (2016)CrossRefGoogle Scholar
  55. Özkaya, I.: A simple analysis of oil-induced fracturing in sedimentary rocks. Mar. Pet. Geol. 5, 293–297 (1988)CrossRefGoogle Scholar
  56. Phillips, J.W.: Experimental Stress Analysis. Ch. 6. http://www.ifsc.usp.br/~lavfis/images/BDApostilas/ApEfFotoelastico/photoelasticity.pdf. Accessed 4 Dec 2017 (2008)
  57. Ramesh, K.: Digital Photoelasticity. Advanced Techniques and Applications. Springer Berlin Heidelberg, Berlin (2000)CrossRefGoogle Scholar
  58. Ross-Murphy, S.: Structure and rheology of gelatin gels: recent progress. Polymer 33(12), 2622–2627 (1992)CrossRefGoogle Scholar
  59. Sigma-Aldrich. Gelatin Product Information Sheet, CAS RN 9000-70-8. https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/2/g9382pis.pdf. Accessed 21 Feb 2018
  60. Takada, A.: Experimental study of propagation of liquid-filled crack in gelatin: shape and velocity in hydrostatic stress condition. J. Geophys. Res. 95(B6), 8471–8481 (1990)CrossRefGoogle Scholar
  61. Takada, A.: Accumulation of magma in space and time by crack interaction. In: Ryan, M.P. (ed.) Magmatic Systems, pp. 241–257. Academic Press, San Diego (1994)CrossRefGoogle Scholar
  62. Talukdar, S., Gallango, O., Vallejos, C., Ruggiero, A.: Observations on the primary migration of oil in the La Luna source rocks of the Maracaibo Basin, Venezuela. Oil Gas Sci. Technol. Rev. IFP. 43(3), 357–370 (1988)Google Scholar
  63. Tanné, E., Li, T., Bourdin, B., Marigo, J.J., Maurini, C.: Crack nucleation in variational phase-field models of brittle fracture. J. Mech. Phys. Solids 110, 80–99 (2018)CrossRefGoogle Scholar
  64. ten Grotenhuis, S.M., Piazolo, S., Pakula, T., Passchier, C., Bons, P.D.: Are polymers suitable rock analogs? Tectonophysics 350, 35–47 (2002)CrossRefGoogle Scholar
  65. Timoshenko, S., Goodier, J.: Theory of Elasticity. McGraw-Hill Higher Education, New York (1970)Google Scholar
  66. van Otterloo, J., Cruden, A.R.: Rheology of pig skin gelatine: defining the elastic domain and its thermal and mechanical properties for geological analogue. Tectonophysics 683, 86–97 (2016)CrossRefGoogle Scholar
  67. Vishay Precision Group. Introduction to Analysis by the PhotoStress Method. Tech Note TN-702-2 (2011)Google Scholar
  68. Watanabe, T., Masuyama, T., Nagaoka, K., Tahara, T.: Analog experiments on magma-filled cracks: competition between external stresses and internal pressure. Earth Planets Space 54, 1247–1261 (2002)CrossRefGoogle Scholar
  69. White, J.A., Borja, R.I.: Stabilized low-order finite elements for coupled solid deformation/fluid-diffusion and their application to fault zone transients. Comput. Methods Appl. Mech. Eng. 197(49–50), 4353–4366 (2008)CrossRefGoogle Scholar
  70. White, J.A., Castelletto, N., Tchelepi, H.A.: Block-partitioned solvers for coupled poromechanics: a unified framework. Comput. Methods Appl. Mech. Eng. 303, 55–74 (2016)CrossRefGoogle Scholar
  71. Wu, Y.S., Ye, M., Sudicky, E.A.: Fracture-flow-enhanced matrix diffusion in solute transport through fractured porous media. Transp. Porous Media 81(1), 21 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Energy Resources EngineeringStanford UniversityStanfordUSA

Personalised recommendations