Advertisement

Transport in Porous Media

, Volume 130, Issue 3, pp 675–698 | Cite as

Pore-Structure-Based Determination of Unsaturated Hygric Properties of Porous Materials

  • Muhammad IslahuddinEmail author
  • Hans Janssen
Article
  • 64 Downloads

Abstract

A reliable and practical method of hygric property characterisation is a major determinant in properly analysing hygric performance of built constructions. The current empirical approach, however, yields data that are still incomplete, not fully representative, and not entirely reliable. In this study, hygric properties are therefore determined directly from pore structure information by applying stationary unsaturated pore-scale physics to model moisture storage and transport. The pore space is captured by visualisation techniques and further extracted into a discrete network of variably shaped pore bodies interconnected by pore throats. In this network, corner and surface adsorption and capillary condensation are simulated to define the moisture storage. Air entrapment is furthermore considered to determine the capillary moisture content. The resulting spatial moisture distribution in the pore network allows moisture to flow, in wet elements in the liquid phase and in dry elements in the vapour phase. The adsorbed corner and surface films moreover enable additional liquid flow. These various simultaneous flows aggregately define the transport property. A comparison to measured data validates the presented hygric property model.

Keywords

Hygric properties Moisture retention curve Moisture permeability curve Pore-network model Unsaturated flow Porous materials 

Notes

Acknowledgements

The authors gratefully thank Professor Jeff Gostick for making his code open source, and Dr. Steven Claes and Dr. Chi Feng for their PNMs and measured data of the sintered-glass filter, respectively. Muhammad Islahuddin thanks Dr. Evy Vereecken for fruitful discussions.

References

  1. Badmann, R., Stockhausen, N., Setzer, M.J.: The statistical thickness and the chemical potential of adsorbed water films. J. Colloid Interface Sci. 82(2), 534–542 (1981).  https://doi.org/10.1016/0021-9797(81)90395-7 CrossRefGoogle Scholar
  2. Bakke, S., Øren, P.E.: 3-D pore-scale modelling of sandstones and flow simulations in the pore networks. SPE J. 2(02), 136–149 (1997).  https://doi.org/10.2118/35479-PA CrossRefGoogle Scholar
  3. Baldwin, C.A., Sederman, A.J., Mantle, M.D., Alexander, P., Gladden, L.F.: Determination and characterization of the structure of a pore space from 3D volume images. J. Colloid Interface Sci. 181(1), 79–92 (1996).  https://doi.org/10.1006/jcis.1996.0358 CrossRefGoogle Scholar
  4. Carmeliet, J., Roels, S.: Determination of the isothermal moisture transport properties of porous building materials. J. Build. Phys. 24(3), 183–210 (2001).  https://doi.org/10.1106/Y6T2-9LLP-04Y5-AN6T CrossRefGoogle Scholar
  5. Carmeliet, J., Roels, S.: Determination of the moisture capacity of porous building materials. J. Therm. Envel. Build. Sci. 25(3), 209–237 (2002).  https://doi.org/10.1106/109719602022835 CrossRefGoogle Scholar
  6. Carmeliet, J., Descamps, F., Houvenaghel, G.: A multiscale network model for simulating moisture transfer properties of porous media. Transp. Porous Med. 35(1), 67–88 (1999).  https://doi.org/10.1023/A:1006500716417 CrossRefGoogle Scholar
  7. Carmeliet, J., Hens, H., Roels, S., Adan, O., Brocken, H., Cerny, R., Pavlik, Z., Hall, C., Kumaran, K., Pel, L.: Determination of the liquid water diffusivity from transient moisture transfer experiments. J. Build. Phys. 27(4), 277–305 (2004).  https://doi.org/10.1177/1097196304042324 CrossRefGoogle Scholar
  8. Chatzis, I., Dullien, F.: Modelling pore structure by 2-D and 3-D networks with applicationto sandstones. J. Can. Pet. Technol. 16(01), 97–108 (1977).  https://doi.org/10.2118/77-01-09 CrossRefGoogle Scholar
  9. Descamps, F.: Continuum and discrete modelling of isothermal water and air flow in porous media. Ph.D. thesis, KU Leuven, Belgium (1997).  https://doi.org/10.13140/2.1.1158.5601
  10. Dong, H., Blunt, M.J.: Pore-network extraction from micro-computerized-tomography images. Phys. Rev. E 80(3), 036307 (2009).  https://doi.org/10.1103/PhysRevE.80.036307 CrossRefGoogle Scholar
  11. Feng, C., Janssen, H., Feng, Y., Meng, Q.: Hygric properties of porous building materials: analysis of measurement repeatability and reproducibility. Build. Environ. 85, 160–172 (2015).  https://doi.org/10.1016/j.buildenv.2014.11.036 CrossRefGoogle Scholar
  12. Fries, N., Dreyer, M.: An analytic solution of capillary rise restrained by gravity. J. Colloid Interface Sci. 320(1), 259–263 (2008).  https://doi.org/10.1016/j.jcis.2008.01.009 CrossRefGoogle Scholar
  13. Gostick, J., Aghighi, M., Hinebaugh, J., Tranter, T., Hoeh, M.A., Day, H., Spellacy, B., Sharqawy, M.H., Bazylak, A., Burns, A., Lehnert, W., Putz, A.: OpenPNM: a pore network modeling package. Comput. Sci. Eng. 18(4), 60–74 (2016).  https://doi.org/10.1109/MCSE.2016.49 CrossRefGoogle Scholar
  14. Gostick, J.T., Ioannidis, M.A., Fowler, M.W., Pritzker, M.D.: Pore network modeling of fibrous gas diffusion layers for polymer electrolyte membrane fuel cells. J. Power Sources 173(1), 277–290 (2007).  https://doi.org/10.1016/j.jpowsour.2007.04.059 CrossRefGoogle Scholar
  15. Hinebaugh, J., Bazylak, A.: Condensation in PEM fuel cell gas diffusion layers: a pore network modeling approach. J. Electrochem. Soc. 157(10), B1382–B1390 (2010).  https://doi.org/10.1149/1.3467837 CrossRefGoogle Scholar
  16. Islahuddin, M., Janssen, H.: Numerical estimation of isothermal moisture storage and transport properties. In: Grunewald, J. (ed.) Proceedings of the CESBP Central European Symposium on Building Physics, BauSIM, Dresden, pp. 301–308 (2016)Google Scholar
  17. Janssen, H., Scheffler, G.A., Plagge, R.: Experimental study of dynamic effects in moisture transfer in building materials. Int. J. Heat Mass Transf. 98, 141–149 (2016).  https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.031 CrossRefGoogle Scholar
  18. Jerauld, G.R., Scriven, L.E., Davis, H.T.: Percolation and conduction on the 3D Voronoi and regular networks: a second case study in topological disorder. J. Phys. C Solid State Phys. 17(19), 3429–3439 (1984).  https://doi.org/10.1088/0022-3719/17/19/017 CrossRefGoogle Scholar
  19. Jivkov, A.P., Hollis, C., Etiese, F., McDonald, S.A., Withers, P.J.: A novel architecture for pore network modelling with applications to permeability of porous media. J. Hydrol. 486, 246–258 (2013).  https://doi.org/10.1016/j.jhydrol.2013.01.045 CrossRefGoogle Scholar
  20. Lindquist, W.B., Lee, S.M., Coker, D.A., Jones, K.W., Spanne, P.: Medial axis analysis of void structure in three-dimensional tomographic images of porous media. J. Geophys. Res. Solid Earth 101(B4), 8297–8310 (1996).  https://doi.org/10.1029/95JB03039 CrossRefGoogle Scholar
  21. Mason, G., Morrow, N.R.: Capillary behavior of a perfectly wetting liquid in irregular triangular tubes. J. Colloid Interface Sci. 141(1), 262–274 (1991).  https://doi.org/10.1016/0021-9797(91)90321-X CrossRefGoogle Scholar
  22. Mayer, R.P., Stowe, R.A.: Mercury porosimetry–breakthrough pressure for penetration between packed spheres. J. Colloid Sci. 20(8), 893–911 (1965).  https://doi.org/10.1016/0095-8522(65)90061-9 CrossRefGoogle Scholar
  23. Parlar, M., Yortsos, Y.C.: Percolation theory of vapor adsorption-desorption processes in porous materials. J. Colloid Interface Sci. 124(1), 162–176 (1988).  https://doi.org/10.1016/0021-9797(88)90337-2 CrossRefGoogle Scholar
  24. Patzek, T., Kristensen, J.: Shape factor correlations of hydraulic conductance in noncircular capillaries: II. Two-phase creeping flow. J. Colloid Interface Sci. 236(2), 305–317 (2001).  https://doi.org/10.1006/jcis.2000.7414 CrossRefGoogle Scholar
  25. Pel, L., Kopinga, K., Brocken, H.: Moisture transport in porous building materials. Heron 41(2), 95–105 (1996)Google Scholar
  26. Piri, M., Blunt, M.J.: Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. I. Model description. Phys. Rev. E 71(2), 026301 (2005).  https://doi.org/10.1103/PhysRevE.71.026301 CrossRefGoogle Scholar
  27. Prat, M.: Pore network models of drying, contact angle, and film flows. Chem. Eng. Technol. 34(7), 1029–1038 (2011).  https://doi.org/10.1002/ceat.201100056 CrossRefGoogle Scholar
  28. Princen, H.: Capillary phenomena in assemblies of parallel cylinders: I. Capillary rise between two cylinders. J. Colloid Interface Sci. 30(1), 69–75 (1969a).  https://doi.org/10.1016/0021-9797(69)90379-8 CrossRefGoogle Scholar
  29. Princen, H.: Capillary phenomena in assemblies of parallel cylinders: II. Capillary rise in systems with more than two cylinders. J. Colloid Interface Sci. 30(3), 359–371 (1969b).  https://doi.org/10.1016/0021-9797(69)90403-2 CrossRefGoogle Scholar
  30. Princen, H.: Capillary phenomena in assemblies of parallel cylinders: III. Liquid Columns between horizontal parallel cylinders. J. Colloid Interface Sci. 34(2), 171–184 (1970).  https://doi.org/10.1016/0021-9797(70)90167-0 CrossRefGoogle Scholar
  31. Qin, C.: Water transport in the gas diffusion layer of a polymer electrolyte fuel cell: dynamic pore-network modeling. J. Electrochem. Soc. 162(9), F1036–F1046 (2015).  https://doi.org/10.1149/2.0861509jes CrossRefGoogle Scholar
  32. Quenard, D., Sallee, H.: Water vapor adsorption and transfer in cement-based materials: a network simulation. Mater. Struct. 25(9), 515–522 (1992).  https://doi.org/10.1007/BF02472447 CrossRefGoogle Scholar
  33. Roels S, Carmeliet J, Hens H (2003a) HAMSTAD WP1: Final report—moisture transfer properties and materials characterisation no. February, pp. 114Google Scholar
  34. Roels, S., Carmeliet, J., Hens, H.: Modelling unsaturated moisture transport in heterogeneous limestone. Transp. Porous Med. 52(3), 333–350 (2003b).  https://doi.org/10.1023/A:1023552011642 CrossRefGoogle Scholar
  35. Roels, S., Carmeliet, J., Hens, H., Adan, O., Brocken, H., Cerny, R., Pavlík, Z., Ellis, T., Hall, C., Kumaran, K., Pel, L., Plagge, R.: A comparison of different techniques to quantify moisture content profiles in porous building materials. J. Build. Phys. 27(4), 261–276 (2004a).  https://doi.org/10.1177/1097196304042117 CrossRefGoogle Scholar
  36. Roels, S., Carmeliet, J., Hens, H., Adan, O., Brocken, H., Cerny, R., Pavlik, Z., Hall, C., Kumaran, K., Pel, L., Plagge, R.: Interlaboratory comparison of hygric properties of porous building materials. J. Build. Phys. 27(4), 307–325 (2004b).  https://doi.org/10.1177/1097196304042119 CrossRefGoogle Scholar
  37. Sahimi, M.: Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing. Rev. Mod. Phys. 65(4), 1393–1534 (1993).  https://doi.org/10.1103/RevModPhys.65.1393 CrossRefGoogle Scholar
  38. Scheffler, G.A., Plagge, R.: A whole range hygric material model: modelling liquid and vapour transport properties in porous media. Int. J. Heat Mass Transf. 53(1–3), 286–296 (2010).  https://doi.org/10.1016/j.ijheatmasstransfer.2009.09.030 CrossRefGoogle Scholar
  39. Silin, D., Patzek, T.: Pore space morphology analysis using maximal inscribed spheres. Phys. A Stat. Mech. Appl. 371(2), 336–360 (2006).  https://doi.org/10.1016/j.physa.2006.04.048 CrossRefGoogle Scholar
  40. Valvatne, P.H., Piri, M., Lopez, X., Blunt, M.J.: Predictive pore-scale modeling of single and multiphase flow. Transp. Porous Med. 58(1), 23–41 (2005).  https://doi.org/10.1007/s11242-004-5468-2 CrossRefGoogle Scholar
  41. Van De Walle, W., Claes, S., Janssen, H.: Implementation and validation of a 3D image-based prediction model for the thermal conductivity of cellular and granular porous building blocks. Constr. Build. Mater. 182, 427–440 (2018).  https://doi.org/10.1016/j.conbuildmat.2018.06.105 CrossRefGoogle Scholar
  42. Vogel, H.J., Roth, K.: Quantitative morphology and network representation of soil pore structure. Adv. Water Resour. 24(3–4), 233–242 (2001).  https://doi.org/10.1016/S0309-1708(00)00055-5 CrossRefGoogle Scholar
  43. Vorhauer, N., Metzger, T., Tsotsas, E.: Empirical macroscopic model for drying of porous media based on pore networks and scaling theory. Dry Technol. 28(8), 991–1000 (2010).  https://doi.org/10.1080/07373937.2010.497088 CrossRefGoogle Scholar
  44. Wilkinson, D., Willemsen, J.F.: Invasion percolation: a new form of percolation theory. J. Phys. A Math. Gen. 16, 3365–3376 (1983)CrossRefGoogle Scholar
  45. Yiotis, A.G., Tsimpanogiannis, I.N., Stubos, A.K., Yortsos, Y.C.: Pore-network study of the characteristic periods in the drying of porous materials. J. Colloid Interface Sci. 297(2), 738–748 (2006).  https://doi.org/10.1016/j.jcis.2005.11.043 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.KU Leuven, Department of Civil EngineeringBuilding Physics SectionLeuvenBelgium

Personalised recommendations