Advertisement

Multi-resolution Grid Connectivity-Based Reparameterization for Effective Subsurface Model Calibration

  • Feyi Olalotiti-LawalEmail author
  • Akhil Datta-Gupta
Article
  • 53 Downloads

Abstract

Low-rank representation of reservoir property fields has evolved over the years and offered significant benefits for robust subsurface model calibration problems. In particular, the grid connectivity-based (GCT) parameterization techniques provide a framework for efficient updates of high-resolution models while preserving essential geologic features. For many subsurface flow problems, high fluxes are localized in the model and the normal GCT scheme struggles to effectively resolve the associated high-resolution model properties, because of the inherent smoothing effects. We propose a multi-resolution grid connectivity transform (M-GCT) to address this shortcoming. In this parameterization scheme, the basis functions utilized for field property parameterization are constructed from adaptively coarsened grids which are based on the total fluid flux distribution in the model. The M-GCT basis functions display improved image compression within the area of interest compared to the normal GCT scheme. The power and utility of the M-GCT scheme is demonstrated using a series of numerical experiments with 2D models and field-scale reservoir models.

Keywords

Inverse modeling Image compression Subsurface model calibration Carbon dioxide utilization and storage 

Notes

References

  1. Aanonsen, S.I.: Efficient history matching using a multiscale technique. SPE Reserv. Eval. Eng. 11(01), 154–164 (2008)CrossRefGoogle Scholar
  2. Alon, N., Seymour, P., Thomas, R.: A separator theorem for nonplanar graphs. J. Am. Math. Soc. 3(4), 801–808 (1990)CrossRefGoogle Scholar
  3. Aziz, K., Settari, A.: Petroleum reservoir simulation. Applied Science Publication Ltd., London (1979)Google Scholar
  4. Bhark, E., Jafarpour, B., Datta‐Gupta, A.: A generalized grid connectivity–based parameterization for subsurface flow model calibration. Water Resources Research 47(6) (2011)Google Scholar
  5. Bhark, E.W.: Multiscale Spectral-domain parameterization for history matching in structured and unstructured grid geometries. Texas A&M University, College Station (2011)Google Scholar
  6. Chen, W.H., Gavalas, G.R., Seinfeld, J.H., Wasserman, M.L.: A new algorithm for automatic history matching. Soc. Petrol. Eng. J. 14(6), 593–608 (1974).  https://doi.org/10.2118/4545-PA CrossRefGoogle Scholar
  7. Chen, Y., Zhang, D.: Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Adv. Water Resour. 29(8), 1107–1122 (2006)CrossRefGoogle Scholar
  8. Cheng, H., Datta-Gupta, A., He, Z.: A comparison of travel-time and amplitude matching for field-scale production-data integration: sensitivity, nonlinearity, and practical implications. SPE J. 10(01), 75–90 (2005).  https://doi.org/10.2118/84570-PA CrossRefGoogle Scholar
  9. Christie, M., Blunt, M.: Tenth SPE comparative solution project: a comparison of upscaling techniques. In: SPE Reservoir Simulation Symposium 2001. Society of Petroleum EngineersGoogle Scholar
  10. De Natale, F.G., Desoli, G.S., Giusto, D.D., Vernazza, G.: Adaptive DCT for image-data compression. Eur. Trans. Telecommun. 3(4), 359–366 (1992)CrossRefGoogle Scholar
  11. Deutsch, C.V., Journel, A.G.: Geostatistical software library and user’s guide. New York 119, 147 (1992)Google Scholar
  12. Emerick, A.A., Reynolds, A.C.: Ensemble smoother with multiple data assimilation. Comput. Geosci. 55, 3–15 (2013)CrossRefGoogle Scholar
  13. Ertekin, T., Abou-Kassen, J.H., King, G.R.: Basic applied reservoir simulations. Soc. Pet. Eng. (2001)Google Scholar
  14. Fiedler, M.: Algebraic connectivity of graphs. Czechoslov. Math. J. 23(2), 298–305 (1973)Google Scholar
  15. Haemers, W.H.: Interlacing eigenvalues and graphs. Linear Algebra Appl. 226, 593–616 (1995)CrossRefGoogle Scholar
  16. Hajizadeh, Y., Christie, M.A., Demyanov, V.: Towards multiobjective history matching: faster convergence and uncertainty quantification. In: SPE Reservoir Simulation Symposium 2011. Society of Petroleum EngineersGoogle Scholar
  17. He, Z., Datta-Gupta, A., Yoon, S.: Streamline-based production data integration with gravity and changing field conditions. SPEJ 7(4), 423–436 (2002)CrossRefGoogle Scholar
  18. Jafarpour, B., McLaughlin, D.B.: History matching with an ensemble Kalman filter and discrete cosine parameterization. Comput Geosci 12(2), 227–244 (2008).  https://doi.org/10.1007/s10596-008-9080-3 CrossRefGoogle Scholar
  19. Journel, A.G., Alabert, F.G.: New method for reservoir mapping. JPT 42(02), 212–218 (1990)CrossRefGoogle Scholar
  20. Karhunen, K.: Über lineare Methoden in der Wahrscheinlichkeitsrechnung, vol. 37. Universitat Helsinki, (1947)Google Scholar
  21. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK users’ guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM (1998).  https://doi.org/10.1137/1.9780898719628 Google Scholar
  22. Li, R., Reynolds, A.C., Oliver, D.S.: History matching of three-phase flow production data. In: SPE Reservoir Simulation Symposium 2001. Society of Petroleum EngineersGoogle Scholar
  23. Loeve, M.: Probability theory, vol II. Grad Texts Math 46, 0–387 (1978)Google Scholar
  24. Lophaven, S.N., Nielsen, H.B., Søndergaard, J., Modellering, D.T.U.I.O.M.: DACE: a Matlab kriging toolbox, version 2.0. IMM, Informatics and Mathematical Modelling, The Technical University of Denmark (2002)Google Scholar
  25. Ma, X., Al-Harbi, M., Datta-Gupta, A., Efendiev, Y.: An efficient two-stage sampling method for uncertainty quantification in history matching geological models. SPE J. 13(01), 77–87 (2008)CrossRefGoogle Scholar
  26. Mathworks: MATLAB Product Documentation. https://www.mathworks.com/help/ (2016). Accessed June 2017
  27. Nocedal, J., Wright, S.: Numerical optimization. Springer, Berlin (2006)Google Scholar
  28. Olalotiti-Lawal, F.: Application of Fast Marching Methods for Rapid Reservoir Forecast and Uncertainty Quantification. Texas A&M University, College Station (2013)Google Scholar
  29. Olalotiti-Lawal, F., Datta-Gupta, A.: A multiobjective Markov chain Monte Carlo approach for history matching and uncertainty quantification. J. Petrol. Sci. Eng. 166, 759–777 (2018)CrossRefGoogle Scholar
  30. Olalotiti-Lawal, F., Onishi, T., Kim, H., Datta-Gupta, A., Fujita, Y., Hagiwara, K.: Post-combustion carbon dioxide enhanced-oil-recovery development in a mature oil field: model calibration using a hierarchical approach. SPE Reservoir Evaluation & Engineering (2019)Google Scholar
  31. Oliver, D.S., Reynolds, A.C., Liu, N.: Inverse Theory for Petroleum Reservoir Characterization and History Matching. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  32. Park, H.-Y., Datta-Gupta, A., King, M.J.: Handling conflicting multiple objectives using pareto-based evolutionary algorithm during history matching of reservoir performance. J. Petrol. Sci. Eng. 125, 48–66 (2015)CrossRefGoogle Scholar
  33. Parker, R.L.: Geophysical Inverse Theory. Princeton University Press, Princeton (1994)Google Scholar
  34. Peters, L., Arts, R., Brouwer, G., Geel, C., Cullick, S., Lorentzen, R.J., Chen, Y., Dunlop, N., Vossepoel, F.C., Xu, R.: Results of the Brugge benchmark study for flooding optimization and history matching. SPE Reserv. Eval. Eng. 13(03), 391–405 (2010)CrossRefGoogle Scholar
  35. Ramos, M.G., Hemami, S.S.: Edge-adaptive JPEG image compression. In: Visual Communications and Image Processing’96 1996, pp. 1082–1093. International Society for Optics and PhotonicsGoogle Scholar
  36. Samet, H.: The quadtree and related hierarchical data structures. ACM Comput. Surv. 16(2), 187–260 (1984)CrossRefGoogle Scholar
  37. Sarma, P., Durlofsky, L., Aziz, K.: Computational techniques for closed–loop reservoir modeling with application to a realistic reservoir. Pet. Sci. Technol. 26(10–11), 1120–1140 (2008a)CrossRefGoogle Scholar
  38. Sarma, P., Durlofsky, L.J., Aziz, K.: Kernel principal component analysis for efficient, differentiable parameterization of multipoint geostatistics. Math. Geosci. 40(1), 3–32 (2008b)CrossRefGoogle Scholar
  39. Schlumberger (ed.): Technical Description. ECLIPSE Industry-Reference Reservoir Simulator. Schlumberger, Houston (2014)Google Scholar
  40. Schulze-Riegert, R., Axmann, J., Haase, O., Rian, D., You, Y.-L.: Evolutionary algorithms applied to history matching of complex reservoirs. SPE Reserv. Eval. Eng. 5(02), 163–173 (2002)CrossRefGoogle Scholar
  41. Strang, G.: The discrete cosine transform. SIAM Rev. 41(1), 135–147 (1999)CrossRefGoogle Scholar
  42. Tarantola, A.: Inverse Problem Theory. Methods for Model Parameter Estimation. SIAM, Philadelpha (2005)CrossRefGoogle Scholar
  43. Taubin, G.: A signal processing approach to fair surface design. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques 1995, pp. 351–358. ACMGoogle Scholar
  44. Todd, M., Longstaff, W.: The development, testing, and application of a numerical simulator for predicting miscible flood performance. JPT 24(07), 874–882 (1972)CrossRefGoogle Scholar
  45. Trefethen, L.N., Bau III, D.: Numerical linear algebra, vol. 50. SIAM, Philadelpha (1997)CrossRefGoogle Scholar
  46. Vasco, D., Seongsik, Y., Datta-Gupta, A.: Integrating dynamic data into high-resolution reservoir models using streamline-based analytic sensitivity coefficients. SPE J. 4(04), 389–399 (1999)CrossRefGoogle Scholar
  47. Willhite, G. (ed.): Waterflooding, Volume 3 of SPE Textbook Series. Society of Petroleum Engineers, Richardson (1986)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Quantum Reservoir Impact LLCHoustonUSA
  2. 2.Texas A&M UniversityCollege StationUSA

Personalised recommendations