Advertisement

In Situ CH4–CO2 Dispersion Measurements in Rock Cores

  • Ming Li
  • Sarah J. Vogt
  • Eric F. May
  • Michael L. JohnsEmail author
Article
  • 26 Downloads

Abstract

Injection of carbon dioxide (CO2) into a natural gas reservoir is an emerging technology for enhanced natural gas recovery (EGR) realizing increased natural gas production whilst sequestering the injected CO2. However, given that CO2 and natural gas are completely miscible, simulation of potential EGR scenarios is required to determine when breakthrough of CO2 will occur at the natural gas production wells. For such reservoir simulations to be reliable (independent of software used), accurate dispersion data between CO2 and natural gas at relevant reservoir conditions are required. To this end, we apply one-dimensional magnetic resonance imaging (MRI) to quantify this dispersion process in situ in both sandstone and carbonate rock cores. Specifically we apply the SPRITE MRI sequence (Balcom et al. in J Magn Reson Ser A 123(1):131–134, 1996.  https://doi.org/10.1006/jmra.1996.0225) to facilitate quantitative axial profiles of methane (CH4) content during core flooding processes between CO2 and CH4. Simultaneously we measure, using infrared, the effluent CO2 and CH4 concentrations enabling ex situ dispersion measurements. Via comparison with the corresponding MRI data, the erroneous contributions to dispersion from entry/exit effects and mixing in piping to and from the rock core holder are quantified. Furthermore, we demonstrate how nuclear magnetic resonance T2 measurements can be uniquely used to probe the pore size occupancy of the CH4 during the core flooding process.

Keywords

Enhanced gas recovery Core flooding CO2 Dispersion MRI 

Notes

Acknowledgements

This work was funded by the Australian Research Council through the Discovery Project DP170101108. It was part of a collaboration with the College of Petroleum Engineering and Geosciences, KFUPM.

References

  1. Akkurt, R., Vinegar, H.J., Tutunjian, P.N., Guillory, A.J.: NMR logging of natural gas reservoirs. Log Anal. 37(6), 33–42 (1996)Google Scholar
  2. Balcom, B.J., MacGregor, R.P., Beyea, S.D., Green, D.P., Armstrong, R.L., Bremner, T.W.: Single point ramped imaging with T 1 enhancement (SPRITE). J. Magn. Reson. Ser. A 123(1), 131–134 (1996).  https://doi.org/10.1006/jmra.1996.0225 CrossRefGoogle Scholar
  3. Barrufet, M.A., Bacquet, A., Falcone, G.: Analysis of the storage capacity for CO2 sequestration of a depleted gas condensate reservoir and a saline aquifer. J. Can. Pet. Technol. 49(8), 23–31 (2010).  https://doi.org/10.2118/139771-PA CrossRefGoogle Scholar
  4. Blackwell, R.J.: Laboratory studies of microscopic dispersion phenomena. Soc. Pet. Eng. J. 2, 1–8 (1962).  https://doi.org/10.2118/1483-G CrossRefGoogle Scholar
  5. Blok, K., Williams, R.H., Katofsky, R.E., Hendriks, C.A.: Hydrogen production from natural gas, sequestration of recovered CO2 in depleted gas wells and enhanced natural gas recovery. Energy 22, 161–168 (1997).  https://doi.org/10.1016/S0360-5442(96)00136-3 CrossRefGoogle Scholar
  6. Brigham, W.E., Reed, P.W., Dew, J.N.: Experiments on mixing during miscible displacement in porous media. Soc. Pet. Eng. J. 1(1), 1–8 (1961).  https://doi.org/10.2118/1430-G CrossRefGoogle Scholar
  7. Carneiro, G., Souza, A., Boyd, A., Schwartz, L., Song, Y., Azeredo, R., Trevizan, W., Santos, B., Rios, E., Machado, V.: Evaluating pore space connectivity by NMR diffusive coupling. In: Presented at the SPWLA 55th Annual Logging Symposium, Abu Dhabi, 18–22 May 2014Google Scholar
  8. Chang, D., Vinegar, H, Morriss, C., Straley, C.: Effective porosity, producible fluid and permeability in carbonates from NMR logging. In: Presented at the SPWLA 35th Annual Logging Symposium, Tulsa, Oklahoma, 19–22 June 1994Google Scholar
  9. Cheng, Y., Huang, Q., Eic, M., Balcom, B.J.: CO2 dynamic adsorption/desorption on zeolite 5A studied by 13C magnetic resonance imaging. Langmuir 21(10), 4376–4381 (2005).  https://doi.org/10.1021/la047302p CrossRefGoogle Scholar
  10. Coates, G.R., Xiao, L., Prammer, M.G.: NMR Logging Principles and Applications. Halliburton Energy Services, Houston (1999)Google Scholar
  11. Connolly, P.R.J., Vogt, S.J., Iglauer, S., May, E.F., Johns, M.L.: Capillary trapping quantification in sandstones using NMR relaxometry. Wat. Resources Res. 53(9), 7917–7932 (2017).  https://doi.org/10.1002/2017WR020829 CrossRefGoogle Scholar
  12. Connolly, P.R.J., Yan, W., Zhang, D., Mahmoud, M., Verrall, M., Lebedev, M., Iglauer, S., Metaxas, P., May, E.F., Johns, M.L.: Simulation and experimental measurements of internal magnetic field gradients and NMR transverse relaxation times (T 2) in sandstone rocks. J. Pet. Sci. Eng. 175, 985–997 (2019).  https://doi.org/10.1016/j.petrol.2019.01.036 CrossRefGoogle Scholar
  13. Delgado, J.M.P.Q.: Longitudinal and transverse dispersion in porous media. Chem. Eng. Res. Des. 85(9), 1245–1252 (2007).  https://doi.org/10.1205/cherd07017 CrossRefGoogle Scholar
  14. Edwards, M.F., Richardson, J.F.: Gas dispersion in packed beds. Chem. Eng. Sci. 23(2), 109–123 (1968).  https://doi.org/10.1016/0009-2509(68)87056-3 CrossRefGoogle Scholar
  15. Ehrenberg, S.N., Nadeau, P.H.: Sandstone vs. carbonate petroleum reservoirs: a global perspective on porosity-depth and porosity-permeability relationships. AAPG Bull. 89(4), 435–445 (2005).  https://doi.org/10.1306/11230404071 CrossRefGoogle Scholar
  16. Freedman, R., Heaton, N., Flaum, M., Hirasaki, G.J., Flaum, C., Hürlimann, M.: Wettability, saturation, and viscosity from NMR measurements. SPE J. 8(4), 317–327 (2003).  https://doi.org/10.2118/87340-PA CrossRefGoogle Scholar
  17. Guntuka, S., Farooq, S., Rajendran, A.: A- and B-site substituted lanthanum cobaltite perovskite as high temperature oxygen sorbent. 2. Column dynamics study. Ind. Eng. Chem. Res. 47(1), 163–170 (2008).  https://doi.org/10.1021/ie070860p CrossRefGoogle Scholar
  18. Honari, A., Bijeljic, B., Johns, M.L., May, E.F.: Enhanced gas recovery with CO2 sequestration: the effect of medium heterogeneity on the dispersion of supercritical CO2-CH4. Int. J. Greenh. Gas Control 39, 39–50 (2015a).  https://doi.org/10.1016/j.ijggc.2015.04.014 CrossRefGoogle Scholar
  19. Honari, A., Vogt, S.J., May, E.F., Johns, M.L.: Gas-gas dispersion coefficient measurements using low-field MRI. Transp. Porous Med. 106, 21–32 (2015b).  https://doi.org/10.1007/s11242-014-0388-2 CrossRefGoogle Scholar
  20. Honari, A., Zecca, M., Vogt, S.J., Iglauer, S., Bijeljic, B., Johns, M.L., May, E.F.: The impact of residual water on CH4-CO2 dispersion in consolidated rock cores. Int. J. Greenh. Gas Control 50, 100–111 (2016).  https://doi.org/10.1016/j.ijggc.2016.04.004 CrossRefGoogle Scholar
  21. Hughes, T.J., Honari, A., Graham, B.F., Chauhan, A.S., Johns, M.L., May, E.F.: CO2 sequestration for enhanced gas recovery: new measurements of supercritical CO2-CH4 dispersion in porous media and a review of recent research. Int. J. Greenh. Gas Control 9, 457–468 (2012).  https://doi.org/10.1016/j.ijggc.2012.05.011 CrossRefGoogle Scholar
  22. Johnson, A.C.: Investigation of porous media using nuclear magnetic resonance secular relaxation measurements and micro-CT image analysis. MSc Thesis, University of Texas at Austin, USA (2015)Google Scholar
  23. Kheshgi, H.S., Thomann, H., Bhore, N.A., Hirsch, R.B., Parker, M.E., Teletzke, G.: Perspectives on CCS cost and economics. SPE Econ. Mgmt. 4(1), 24–31 (2012).  https://doi.org/10.2118/139716-PA CrossRefGoogle Scholar
  24. Leung, D.Y.C., Caramanna, G., Maroto-Valer, M.M.: An overview of current status of carbon dioxide capture and storage technologies. Renew. Sust. Energ. Rev. 39, 426–443 (2014).  https://doi.org/10.1016/j.rser.2014.07.093 CrossRefGoogle Scholar
  25. Laesecke, A., Muzny, C.D.: Reference correlation for the viscosity of carbon dioxide. J. Phys. Chem. Ref. Data 46, 013107 (2017).  https://doi.org/10.1063/1.4977429 CrossRefGoogle Scholar
  26. Lemmon, E.W., Bell, I.H., Huber, M.L., McLinden, M.O.: REFPROP 10.0 (2018) Reference Fluid Thermodynamic and Transport Properties, NIST Standard Reference Database 23, DLL Version 10.0Google Scholar
  27. Li, M., Romero-Zerón, L., Marica, F., Balcom, B.J.: Polymer flooding enhanced oil recovery evaluated with magnetic resonance imaging and relaxation time measurements. Energy Fuels 31, 4904–4914 (2017a).  https://doi.org/10.1021/acs.energyfuels.7b00030 CrossRefGoogle Scholar
  28. Li, M., Vashaee, S., Romero-Zerón, L., Marica, F., Balcom, B.J.: A magnetic resonance study of low salinity waterflooding for enhanced oil recovery. Energy Fuels 31, 10802–10811 (2017b).  https://doi.org/10.1021/acs.energyfuels.7b02166 CrossRefGoogle Scholar
  29. Li, M., Xiao, D., Romero-Zerón, L., Marica, F., MacMillan, B., Balcom, B.J.: Mapping three-dimensional oil distribution with π-EPI MRI measurements at low magnetic field. J. Magn. Reson. 269, 13–23 (2016).  https://doi.org/10.1016/j.jmr.2016.05.008 CrossRefGoogle Scholar
  30. Lucia, F.J., Kerans, C., Jennings, J.W.: Carbonate reservoir characterization. Soc. Pet. Eng. 55(6), 70–72 (2003).  https://doi.org/10.2118/82071-JPT Google Scholar
  31. Mesquita, P., Souza, A., Carneiro, G., Boyd, A., Ferreira, F., Machado, P., Anand, V.: Surface relaxivity estimation and NMR-MICP matching in diffusionaly coupled rocks. In: Presented at the International Symposium of the Society of Core Analysts, Snowmass, Colorado, 21–26 August 2016; Paper SCA2016-059Google Scholar
  32. Mitchell, J., Chandrasekera, T.C., Holland, D.J., Gladden, L.F., Fordham, E.J.: Magnetic resonance imaging in laboratory petrophysical core analysis. Phys. Rep. 526(3), 165–225 (2013).  https://doi.org/10.1016/j.physrep.2013.01.003 CrossRefGoogle Scholar
  33. Mitchell, J., Chandrasekera, T.C., Johns, M.L., Gladden, L.F.: Nuclear magnetic resonance relaxation and diffusion in the presence of internal gradients. Phys. Rev. E 81, 026101 (2010).  https://doi.org/10.1103/PhysRevE.81.026101 CrossRefGoogle Scholar
  34. Mitchell, J., Fordham, E.J.: Solium-23 NMR in porous media. Microporous Mesoporous Mater. 269, 109–112 (2018).  https://doi.org/10.1016/j.micromeso.2017.02.004 CrossRefGoogle Scholar
  35. Muir, C.E., Balcom, B.J.: Pure phase encode magnetic resonance imaging of fluids in porous media. Annu. Rep. NMR Spectrosc. 77, 81–113 (2012).  https://doi.org/10.1016/B978-0-12-397020-6.00002-7 CrossRefGoogle Scholar
  36. Newling, B.: Gas flow measurements by NMR. Prog. Nucl. Magn. Reson. Spectrosc. 52(1), 31–48 (2008).  https://doi.org/10.1016/j.pnmrs.2007.08.002 CrossRefGoogle Scholar
  37. Oldenburg, C.M., Benson, S.M.: CO2 injection for enhanced gas production and carbon sequestration. In: Presented at the SPE International Petroleum Conference and Exhibition, Villahermosa, Mexico, 10–12 February 2002; Paper SPE 74367Google Scholar
  38. Patel, M.J., May, E.F., Johns, M.L.: High-fidelity reservoir simulations of enhanced gas recovery with supercritical CO2. Energy 111, 548–559 (2016).  https://doi.org/10.1016/j.energy.2016.04.120 CrossRefGoogle Scholar
  39. Patel, M.J., May, E.F., Johns, M.L.: Inclusion of connate water in enhanced gas recovery reservoir simulations. Energy 141, 757–769 (2017).  https://doi.org/10.1016/j.energy.2017.09.074 CrossRefGoogle Scholar
  40. Pooladi-Darvish, M., Hong, H., Theys, S., Stocker, R., Bachu, S., Dashtgard, S.: CO2 injection for enhanced gas recovery and geological storage of CO2 in the Long Coulee Glauconite F Pool, Alberta. In: Presented at the SPE Annual Technical Conference and Exhibition, Denver, Colorado, 21–24 September 2008; Paper SPE 115789Google Scholar
  41. Rajendran, A., Kariwala, V., Farooq, S.: Correction procedures for extra-column effects in dynamic column breakthrough experiments. Chem. Eng. Sci. 63(10), 2696–2706 (2008).  https://doi.org/10.1016/j.ces.2008.02.023 CrossRefGoogle Scholar
  42. Ramskill, N.P., Sederman, A.J., Mantle, M.D., Appel, M., de Jong, H., Gladden, L.F.: In situ chemically-selective monitoring of multiphase displacement processes in a carbonate rock using 3D magnetic resonance imaging. Transp. Porous Med. 121(1), 15–35 (2018).  https://doi.org/10.1007/s11242-017-0945-6 CrossRefGoogle Scholar
  43. Seo, J.G., Mamora, D.D.: Experimental and simulation studies of sequestration of supercritical carbon dioxide in depleted gas reservoirs. J. Energy Resour. Technol. 127(1), 1–6 (2005).  https://doi.org/10.2118/81200-MS CrossRefGoogle Scholar
  44. Shikhov, I., Li, R., Arns, C.H.: Relaxation and relaxation exchange NMR to characterise asphaltene adsorption and wettability dynamics in siliceous systems. Fuel 220, 692–705 (2018).  https://doi.org/10.1016/j.fuel.2018.02.059 CrossRefGoogle Scholar
  45. Shikhov, I., Arns, C.H.: Tortuosity estimate through paramagnetic gas diffusion in rock saturated with two fluids using T 2 (z, t) low-field NMR. Diffusion Fundamentals 29, 1–7 (2017)Google Scholar
  46. Takahashi, S., Iwasaki, H.: The Diffusion of Gases at High Pressures. III. The Diffusion of 14CO2, in the 12CO2–CH4 System, vol. 20, pp. 27–36. Bulletin of the Chemical Research Institute of Non-Aqueous Solutions, Tohoku University, Sendai (1970)Google Scholar
  47. Takahashi, S.: The diffusion of gases at high pressures. IV. The diffusion of CTH3 in the CH4-CO2 system. Bull. Chem. Soc. Jpn 45, 2074–2078 (1972).  https://doi.org/10.1246/bcsj.45.2074 CrossRefGoogle Scholar
  48. Taylor, G.: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. Ser. A 219(1137), 186–203 (1953).  https://doi.org/10.1098/rspa.1953.0139 CrossRefGoogle Scholar
  49. Taylor, G.: Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proc. R. Soc. Lond. Ser. A 225(1163), 473–477 (1954).  https://doi.org/10.1098/rspa.1954.0216 CrossRefGoogle Scholar
  50. Timur, A.: Nuclear magnetic resonance study of carbonate rocks. Log Anal. 13(5), 3–11 (1972)Google Scholar
  51. Xia, M.: Pore-scale simulation of miscible displacement in porous media using the lattice Boltzmann method. Comput. Geosci. 88, 30–40 (2016).  https://doi.org/10.1016/j.cageo.2015.12.014 CrossRefGoogle Scholar
  52. Xiao, D., Balcom, B.J.: k-t acceleration in pure phase encode MRI to monitor dynamic flooding processes in rock core plugs. J. Magn. Reson. 243, 114–121 (2014).  https://doi.org/10.1016/j.jmr.2014.04.006 CrossRefGoogle Scholar
  53. Yu, D., Jackson, K., Harmon, T.C.: Dispersion and diffusion in porous media under supercritical conditions. Chem. Eng. Sci. 54(3), 357–367 (1999).  https://doi.org/10.1016/S0009-2509(98)00271-1 CrossRefGoogle Scholar
  54. Zecca, M., Vogt, S.J., Connolly, P.R., May, E.F., Johns, M.L.: NMR measurements of tortuosity in partially saturated porous media. Transp. Porous Med. 125(2), 271–288 (2018).  https://doi.org/10.1007/s11242-018-1118-y CrossRefGoogle Scholar
  55. Zecca, M., Vogt, S.J., Honari, A., Xiao, G., Fridjonsson, E.O., May, E.F., Johns, M.L.: Quantitative dependence of CH4-CO2 dispersion on immobile water fraction. AIChE J. 63(11), 5159–5168 (2017).  https://doi.org/10.1002/aic.15824 CrossRefGoogle Scholar
  56. Zhang, Y., Liu, S., Wang, L., Song, Y., Yang, M., Zhao, J., Zhao, Y., Chi, Y.: In situ measurement of the dispersion coefficient of liquid/supercritical CO2-CH4 in a sandpack using CT. RSC Adv. 6, 42367–42376 (2016).  https://doi.org/10.1039/C6RA00763E CrossRefGoogle Scholar
  57. Zhao, Y., Song, Y.: Experimental investigation on spontaneous counter-current imbibition in water-wet natural reservoir sandstone core using MRI. Magn. Reson. Chem. 55(6), 546–552 (2016).  https://doi.org/10.1002/mrc.4563 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Ming Li
    • 1
  • Sarah J. Vogt
    • 1
  • Eric F. May
    • 1
  • Michael L. Johns
    • 1
    Email author
  1. 1.Department of Chemical EngineeringUniversity of Western AustraliaCrawleyAustralia

Personalised recommendations