Effects of Local Transverse Dispersion on Macro-scale Coefficients of Decaying Solute Transport in a Stratified Formation

  • Zhengkun Zhou
  • Liangsheng ShiEmail author
  • Ming Ye
  • Yuanyuan Zha


Estimating the values of dispersion and biochemical reaction rates of heterogeneous aquifers is critical to predicting the temporal evolution and fate of reactive solutes. While previous studies have investigated field-scale heterogeneity of transport and biochemical properties of porous media, effects of local dispersion have not been well understood. In this paper, longitudinal macro-dispersivity, effective decay rate, and effective solute velocity are derived for a stratified aquifer, and the effects of local dispersion, especially the local transverse dispersion, are studied. It is shown that the inclusion of local transverse dispersion leads to enlarged effective decay rate, and that ignoring it may significantly underestimate the effective rate. The Damkohler (Da) number and the coefficient of variation (CV) of decay rate have slight influence to macro-coefficients under very small Pe number (with large local transverse dispersion). However, Da number has growing effect on the asymptotic effective decay rate with the decrease in Pe number, and results in constant asymptotic values regardless of Da number under the condition with very large Pe number. Larger CV of decay rate leads to smaller effective decay rate and effective velocity, and longitudinal macro-coefficient. The longitudinal macro-dispersivity is found to depend on the correlation between the hydraulic conductivity and the decay rate if the local longitudinal dispersion is spatially variable.


Groundwater Dispersion Heterogeneous formations Decay rate 



This study was supported by the Natural Science Foundation of China Grant 51522904 and the National Natural Science Foundation of China Grants 51479144 and 51629901. The third author acknowledges the support by NSFC Grants 51609173 and 51779179. The last author was supported by National Science Foundation Grant EAR-1552329.


  1. Alhashmi, Z., Blunt, M.J., Bijeljic, B.: The impact of pore structure heterogeneity, transport, and reaction conditions on fluid-fluid reaction rate studied on images of pore space. Transp. Porous Media 115(2), 215–237 (2016)CrossRefGoogle Scholar
  2. Allen-King, R.M., Divine, D.P., Robin, M.J., Alldredge, J.R., Gaylord, D.R.: Spatial distributions of perchloroethylene reactive transport parameters in the Borden Aquifer. Water Resour. Res. 42, W01413 (2006)CrossRefGoogle Scholar
  3. Anna, P.D., Jimenez-Martinez, J., Tabuteau, H., Turuban, R., Le Borgne, T., Derrien, M., Meheust, Y.: Mixing and reaction kinetics in porous media: an experimental pore scale quantification. Environ. Sci. Technol. 48(1), 508–516 (2013)CrossRefGoogle Scholar
  4. Atchley, A.L., Navarre-Sitchler, A.K., Maxwell, R.M.: The effects of physical and geochemical heterogeneities on hydro-geochemical transport and effective reaction rates. J. Contam. Hydrol. 165, 53–64 (2014)CrossRefGoogle Scholar
  5. Bakshevskaia, V.A., Pozdniakov, S.P.: Simulation of hydraulic heterogeneity and upscaling permeability and dispersivity in Sandy-Clay formations. Math. Geosci. 48(1), 45–64 (2016)CrossRefGoogle Scholar
  6. Bouchelaghem, F., Almosni, A.: Experimental determination of the longitudinal dispersivity during the injection of a micro-cement grout in a one-dimensional soil column. Transp. Porous Media 52(1), 67–94 (2003)CrossRefGoogle Scholar
  7. Capiro, N.L., Wang, Y., Hatt, J.K., Lebron, C.A., Pennell, K.D., Loffler, F.E.: Distribution of organohalide-respiring bacteria between solid and aqueous phases. Environ. Sci. Technol. 48(18), 10878–10887 (2014)CrossRefGoogle Scholar
  8. Chang, C.M., Urroz, G.E.: Transient stochastic analysis of biodegradable contaminant transport: first-order decay. Transp. Porous Media 35(1), 1–14 (1999)CrossRefGoogle Scholar
  9. Chaudhuri, A., Sekhar, M.: Analytical solutions for macrodispersion in a 3D heterogeneous porous medium with random hydraulic conductivity and dispersivity. Transp. Porous Media 58(3), 217–241 (2005)CrossRefGoogle Scholar
  10. Chiogna, G., Cirpka, O.A., Grathwohl, P., Rolle, M.: Relevance of local compound-specific transverse dispersion for conservative and reactive mixing in heterogeneous porous media. Water Resour. Res. 47, W07540 (2011)Google Scholar
  11. Chrysikopoulos, C.V., Kitanidis, P.K., Roberts, P.V.: Analysis of one-dimensional solute transport through porous media with spatially variable retardation factor. Water Resour. Res. 26(3), 437–446 (1990)CrossRefGoogle Scholar
  12. Chrysikopoulos, C.V., Kitanidis, P.K., Roberts, P.V.: Macrodispersion of sorbing solutes in heterogeneous porous formations with spatially periodic retardation factor and velocity field. Water Resour. Res. 28(6), 1517–1529 (1992a)CrossRefGoogle Scholar
  13. Chrysikopoulos, C.V., Kitanidis, P.K., Roberts, P.V.: Generalized Taylor-Aris moment analysis of the transport of sorbing solutes through porous media with spatially-periodic retardation factor. Transp. Porous Media 7(2), 163–185 (1992b)CrossRefGoogle Scholar
  14. Cirpka, O.A.: Transverse mixing in heterogeneous aquifers. Procedia Environ. Sci. 25, 66–73 (2015)CrossRefGoogle Scholar
  15. Cirpka, O.A., Frind, E.O., Helmig, R.: Numerical simulation of biodegradation controlled by transverse mixing. J. Contam. Hydrol. 40(2), 159–182 (1999)CrossRefGoogle Scholar
  16. Cirpka, O.A., de Barros, F.P., Chiogna, G., Rolle, M., Nowak, W.: Stochastic flux-related analysis of transverse mixing in two-dimensional heterogeneous porous media. Water Resour. Res. 47, W06515 (2011)Google Scholar
  17. Cunningham, J.A., Fadel, Z.J.: Contaminant degradation in physically and chemically heterogeneous aquifers. J. Contam. Hydrol. 94(3), 293–304 (2007)CrossRefGoogle Scholar
  18. Cupola, F., Tanda, M.G., Zanini, A.: Laboratory estimation of dispersivity coefficients. Procedia Environ. Sci. 25, 74–81 (2015)CrossRefGoogle Scholar
  19. Dagan, G.: Flow and Transport in Porous Media. Springer, New York (1989)Google Scholar
  20. Delgado, J.M.P.Q.: Longitudinal and transverse dispersion in porous media. Chem. Eng. Res. Des. 85(9), 1245–1252 (2007)CrossRefGoogle Scholar
  21. Dentz, M., Le Borgne, T., Englert, A., Bijeljic, B.: Mixing, spreading and reaction in heterogeneous media: A brief review. J. Contam. Hydrol. 120, 1–17 (2011)Google Scholar
  22. Dong, S., Dai, Z., Li, J., Zhou, W.: The scale dependence of dispersivity in multi-facies heterogeneous formations. Carbonates Evaporites 33(1), 161–165 (2018)CrossRefGoogle Scholar
  23. Fennell, D.E., Carroll, A.B., Gossett, J.M., Zinder, S.H.: Assessment of indigenous reductive dechlorinating potential at a TCE-contaminated site using microcosms, polymerase chain reaction analysis, and site data. Environ. Sci. Technol. 35(9), 1830–1839 (2001)CrossRefGoogle Scholar
  24. Fernàndez-Garcia, D., Sánchez-Vila, X., Guadagnini, A.: Reaction rates and effective parameters in stratified aquifers. Adv. Water Resour. 31(10), 1364–1376 (2008)CrossRefGoogle Scholar
  25. Fiori, A., Dagan, G.: Transport of a passive scalar in a stratified porous medium. Transp. Porous Media 47(1), 81–98 (2002)CrossRefGoogle Scholar
  26. Fiori, A., Cvetkovic, V., Dagan, G., Attinger, S., Bellin, A., Dietrich, P., Teutsch, G.: Debates—stochastic subsurface hydrology from theory to practice: the relevance of stochastic subsurface hydrology to practical problems of contaminant transport and remediation. What is characterization and stochastic theory good for? Water Resour. Res. 52(12), 9228–9234 (2016)CrossRefGoogle Scholar
  27. Fiori, A., Zarlenga, A., Jankovic, I., Dagan, G.: Solute transport in aquifers: the comeback of the advection dispersion equation and the First Order Approximation. Adv. Water Resour. 110, 349–359 (2017)CrossRefGoogle Scholar
  28. Gelhar, L.W.: Stochastic analyses of solute transport in saturated and unsaturated porous media. In: Bear, J., Corapcioglu, M.Y. (eds.) Advances in Transport Phenomena in Porous Media, pp. 657–700. M. Nijhoff, Dordrecht (1987)CrossRefGoogle Scholar
  29. Gelhar, L.W.: Stochastic Subsurface Hydrology. Prentice-Hall, Engelwood Cliffs (1993)Google Scholar
  30. Gelhar, L.W., Axness, C.L.: Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour. Res. 19(1), 161–180 (1983)CrossRefGoogle Scholar
  31. Gelhar, L.W., Gutjahr, A.L., Naff, R.L.: Stochastic analysis of macrodispersion in a stratified aquifer. Water Resour. Res. 15(6), 1387–1397 (1979)CrossRefGoogle Scholar
  32. Gelhar, L.W., Welty, C., Rehfeldt, K.R.: A critical review of data on field-scale dispersion in aquifers. Water Resour. Res. 28(7), 1955–1974 (1992)CrossRefGoogle Scholar
  33. Güven, O., Molz, F.J.: Deterministic and stochastic analyses of dispersion in an unbounded stratified porous medium. Water Resour. Res. 22(11), 1565–1574 (1986)CrossRefGoogle Scholar
  34. Güven, O., Molz, F.J., Melville, J.G.: An analysis of dispersion in a stratified aquifer. Water Resour. Res. 20(10), 1337–1354 (1984)CrossRefGoogle Scholar
  35. Hoelen, T.P., Cunningham, J.A., Hopkins, G.D., Lebron, C.A., Reinhard, M.: Bioremediation of cis-DCE at a sulfidogenic site by amendment with propionate. Groundw. Monit. Remediat. 26(3), 82–91 (2006)CrossRefGoogle Scholar
  36. Hsu, K.C.: The influence of the log-conductivity autocovariance structure on macrodispersion coefficients. J. Contam. Hydrol. 65(1–2), 65–77 (2003)CrossRefGoogle Scholar
  37. Hunt, A.G., Ghanbarian, B., Skinner, T.E., Ewing, R.P.: Scaling of geochemical reaction rates via advective solute transport. Chaos Interdiscip. J. Nonlinear Sci. 25(7), 075403 (2015)CrossRefGoogle Scholar
  38. Janssen, G.M., Cirpka, O.A., Van der Zee, S.E.: Stochastic analysis of nonlinear biodegradation in regimes controlled by both chromatographic and dispersive mixing. Water Resour. Res. 42, W01417 (2006)Google Scholar
  39. Kabala, Z.J., Sposito, G.: A stochastic model of reactive solute transport with time-varying velocity in a heterogeneous aquifer. Water Resour. Res. 27(3), 341–350 (1991)CrossRefGoogle Scholar
  40. Katzourakis, V.E., Chrysikopoulos, C.V.: Impact of spatially variable collision efficiency on the transport of biocolloids in geochemically heterogeneous porous media. Water Resour. Res. 54(6), 3841–3862 (2018)CrossRefGoogle Scholar
  41. Kretz, V., Berest, P.H.J.P.D., Hulin, J.P., Salin, D.: An experimental study of the effects of density and viscosity contrasts on macrodispersion in porous media. Water Resour. Res. 39(2), 1032–1040 (2003)Google Scholar
  42. Kristensen, E., Andersen, F.Ø., Blackburn, T.H.: Effects of benthic macrofauna and temperature on degradation of macroalgal detritus: the fate of organic carbon. Limnol. Oceanogr. 37(7), 1404–1419 (1992)CrossRefGoogle Scholar
  43. Loschko, M., Wöhling, T., Rudolph, D.L., Cirpka, O.A.: Cumulative relative reactivity: a concept for modeling aquifer-scale reactive transport. Water Resour. Res. 52(10), 8117–8137 (2016)CrossRefGoogle Scholar
  44. Loschko, M., Wöhling, T., Rudolph, D.L., Cirpka, O.A.: Accounting for the decreasing reaction potential of heterogeneous aquifers in a stochastic framework of aquifer-scale reactive transport. Water Resour. Res. 54(1), 442–463 (2018)CrossRefGoogle Scholar
  45. Lumley, J.L., Panofsky, H.A.: The Structure of Atmospheric Turbulence. Wiley, New York (1964)Google Scholar
  46. Matheron, G., De Marsily, G.: Is transport in porous media always diffusive? A counterexample. Water Resour. Res. 16(5), 901–917 (1980)CrossRefGoogle Scholar
  47. Miralles-Wilhelm, F., Gelhar, L.W.: Stochastic analysis of transport and decay of a solute in heterogeneous aquifers. Water Resour. Res. 32(12), 3451–3459 (1996)CrossRefGoogle Scholar
  48. Miralles-Wilhelm, F., Gelhar, L.W.: Stochastic analysis of oxygen-limited biodegradation in heterogeneous aquifers with transient microbial dynamics. J. Contam. Hydrol. 42(1), 69–97 (2000)CrossRefGoogle Scholar
  49. Oktay, G., Molz, F.J., Melville, J.G.: An analysis of dispersion in a stratified aquifer. Water Resour. Res. 20(10), 1337–1354 (1984)CrossRefGoogle Scholar
  50. Oya, S., Valocchi, A.J.: Transport and biodegradation of solutes in stratified aquifers under enhanced in situ bioremediation conditions. Water Resour. Res. 34(12), 3323–3334 (1998)CrossRefGoogle Scholar
  51. Pickens, J.F., Grisak, G.E.: Scale-dependent dispersion in a stratified granular aquifer. Water Resour. Res. 17(4), 1191–1211 (1981)CrossRefGoogle Scholar
  52. Rahman, M.A., Jose, S.C., Nowak, W., Cirpka, O.A.: Experiments on vertical transverse mixing in a large-scale heterogeneous model aquifer. J. Contam. Hydrol. 80(3–4), 130–148 (2005)CrossRefGoogle Scholar
  53. Rajaram, H.: Debates—stochastic subsurface hydrology from theory to practice: introduction. Water Resour. Res. 52(12), 9215–9217 (2016)CrossRefGoogle Scholar
  54. Sanz-Prat, A., Lu, C., Finkel, M., Cirpka, O. A.: On the validity of travel-time based nonlinear bioreactive transport models in steady-state flow. J. Contam. Hydrol. 175, 26–43 (2015)Google Scholar
  55. Sanz-Prat, A., Lu, C., Amos, R. T., Finkel, M., Blowes, D. W., Cirpka, O. A.: Exposure-time based modeling of nonlinear reactive transport in porous media subject to physical and geochemical heterogeneity. J. Contam. Hydrol. 192, 35–49 (2016)Google Scholar
  56. Sharifi Haddad, A., Hassanzadeh, H., Abedi, J., Chen, Z., Ware, A.: Characterization of scale-dependent dispersivity in fractured formations through a divergent flow tracer test. Groundwater 53(S1), 149–155 (2015)CrossRefGoogle Scholar
  57. Straface, S., De Biase, M.: Estimation of longitudinal dispersivity in a porous medium using self-potential signals. J. Hydrol. 505, 163–171 (2013)CrossRefGoogle Scholar
  58. Sudicky, E.A.: A natural gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resour. Res. 22(13), 2069–2082 (1986)CrossRefGoogle Scholar
  59. Tomaszewski, M., Cema, G., Ziembińska-Buczyńska, A.: Influence of temperature and pH on the anammox process: a review and meta-analysis. Chemosphere 182, 203–214 (2017)CrossRefGoogle Scholar
  60. Wright, E.E., Richter, D.H., Bolster, D.: Effects of incomplete mixing on reactive transport in flows through heterogeneous porous media. Phys. Rev. Fluids 2(11), 114501 (2017)CrossRefGoogle Scholar
  61. Yan, Z., Liu, C., Liu, Y., Bailey, V.L.: Multiscale investigation on biofilm distribution and its impact on macroscopic biogeochemical reaction rates. Water Resour. Res. 53(11), 8698–8714 (2017)CrossRefGoogle Scholar
  62. Zech, A., Attinger, S., Cvetkovic, V., Dagan, G., Dietrich, P., Fiori, A., Teutsch, G.: Is unique scaling of aquifer macrodispersivity supported by field data? Water Resour. Res. 51(9), 7662–7679 (2015)CrossRefGoogle Scholar
  63. Zheng, C., Bianchi, M., Gorelick, S.M.: Lessons learned from 25 years of research at the MADE site. Groundwater 49(5), 649–662 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Zhengkun Zhou
    • 1
  • Liangsheng Shi
    • 1
    Email author
  • Ming Ye
    • 2
  • Yuanyuan Zha
    • 1
  1. 1.State Key Laboratory of Water Resources and Hydropower Engineering ScienceWuhan UniversityWuhanChina
  2. 2.Department of Earth, Ocean, and Atmospheric ScienceFlorida State UniversityTallahasseeUSA

Personalised recommendations