Advertisement

Upscaling of Anomalous Pore-Scale Dispersion

  • Alexandre Puyguiraud
  • Philippe Gouze
  • Marco DentzEmail author
Article
  • 57 Downloads

Abstract

We study the upscaling of advective pore-scale dispersion in terms of the Eulerian velocity distribution and advective tortuosity, both flow attributes, and of the average pore length, a medium attribute. The stochastic particle motion is modeled as a time-domain random walk, in which particles move along streamlines in equidistant spatial steps with random velocities and thus random transition times. Particle velocities describe stationary spatial Markov processes, which evolve along streamlines on the mean pore length. The streamwise motion is projected onto the mean flow direction using tortuosity. This upscaled stochastic particle model predicts accurately the (non-Fickian) transport dynamics obtained from direct numerical simulations of particle transport in a three-dimensional digitized Berea sandstone sample. It captures all aspects of transport and sheds light on the dependence of the upscaled transport behavior on the flow heterogeneity and the initial particle distribution, which are critical for the accurate modeling of dispersion from the pre-asymptotic to asymptotic regimes.

Notes

Funding

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ ERC Grant Agreement No. 617511 (MHetScale). This work was partially funded by the CNRS-PICS project CROSSCALE, project number 280090.

References

  1. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2000)Google Scholar
  2. Bear, J.: Dynamics of fluids in Porous Media. American Elsevier, New York (1972)Google Scholar
  3. Berkowitz, B., Scher, H.: On characterization of anomalous dispersion in porous and fractured media. Water Resour. Res. 31(6), 1461–1466 (1995)Google Scholar
  4. Berkowitz, B., Cortis, A., Dentz, M., Scher, H.: Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44, RG2003 (2006).  https://doi.org/10.1029/2005RG000178
  5. Bijeljic, B., Blunt, M.J.: Pore-scale modeling and continuous time random walk analysis of dispersion in porous media. Water Resour. Res. 42, W01202 (2006).  https://doi.org/10.1029/2005WR004578 Google Scholar
  6. Bijeljic, B., Mostaghimi, P., Blunt, M.J.: Signature of non-Fickian solute transport in complex heterogeneous porous media. Phys. Rev. Lett. 107(20), 204502 (2011)Google Scholar
  7. Brenner, H., Edwards, D.: Macrotransport Processes. Butterworth-Heinemann, Waltham (1993)Google Scholar
  8. Carrel, M., Morales, V.L., Dentz, M., Derlon, N., Morgenroth, E., Holzner, M.: Pore-scale hydrodynamics in a progressively bioclogged three-dimensional porous medium: 3-d particle tracking experiments and stochastic transport modeling. Water Resour. Res. 54(3), 2183–2198 (2018)Google Scholar
  9. Carrera, J., Sánchez-Vila, X., Benet, I., Medina, A., Galarza, G., Guimerà, J.: On matrix diffusion: formulations, solution methods and qualitative effects. Hydrogeol. J. 6(1), 178–190 (1998)Google Scholar
  10. Cherblanc, F., Ahmadi, A., Quintard, M.: Two-domain description of solute transport in heterogeneous porous media: comparison between theoretical predictions and numerical experiments. Adv. Water Resour. 30, 1127–1143 (2007)Google Scholar
  11. Comolli, A., Dentz, M.: Anomalous dispersion in correlated porous media: a coupled continuous time random walk approach. Eur. Phys. J. B 90(9), 166 (2017)Google Scholar
  12. Davit, Y., Quintard, M., Debenest, G.: Equivalence between volume averaging and moments matching techniques for mass transport models in porous media. Int. J. Heat Mass Transf. 53(21–22), 4985–4993 (2010)Google Scholar
  13. De Anna, P., Le Borgne, T., Dentz, M., Tartakovsky, A.M., Bolster, D., Davy, P.: Flow intermittency, dispersion, and correlated continuous time random walks in porous media. Phys. Rev. Lett. 110(18), 184502 (2013)Google Scholar
  14. De Anna, P., Quaife, B., Biros, G., Juanes, R.: Prediction of velocity distribution from pore structure in simple porous media. Phys. Rev. Fluids 2, 124103 (2017)Google Scholar
  15. Longitudinal and transverse diffusion in granular deposits: de Josselin de Jong, G. Trans. Am. Geophys. Union 39, 67–74 (1958)Google Scholar
  16. Dentz, M., Berkowitz, B.: Transport behavior of a passive solute in continuous time random walks and multirate mass transfer. Water Resour. Res. 39(5), 1111 (2003).  https://doi.org/10.1029/2001WR001163 Google Scholar
  17. Dentz, M., Kinzelbach, H., Attinger, S., Kinzelbach, W.: Temporal behavior of a solute cloud in a heterogeneous porous medium: 1. Point-like injection. Water Resour. Res. 36(12), 3591–3604 (2000)Google Scholar
  18. Dentz, M., Cortis, A., Scher, H., Berkowitz, B.: Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport. Adv. Water Resour. 27(2), 155–173 (2004)Google Scholar
  19. Dentz, M., Borgne, T.L., Englert, A., Bijeljic, B.: Mixing, spreading and reaction in heterogeneous media: a brief review. J. Contam. Hydrol. 120–121, 1–17 (2011)Google Scholar
  20. Dentz, M., Kang, P.K., Comolli, A., Le Borgne, T., Lester, D.R.: Continuous time random walks for the evolution of Lagrangian velocities. Phys. Rev. Fluids 1(7), 074004 (2016)Google Scholar
  21. Dentz, M., Icardi, M., Hidalgo, J.J.: Mechanisms of dispersion in a porous medium. J. Fluid Mech. 841, 851–882 (2018)Google Scholar
  22. Devroye, L.: Non-uniform Random Variate Generation. Springer, New York (1986)Google Scholar
  23. Gardiner, C.: Stochastic Methods. Springer, Berlin (2010)Google Scholar
  24. Ghanbarian, B., Hunt, A., Ewing, R.P., Sahimi, M.: Tortuosity in porous media: a critical review. Soil Sci. Soc. Am. J. 77(1461), 1461–1477 (2013)Google Scholar
  25. Gjetvaj, F., Russian, A., Gouze, P., Dentz, M.: Dual control of flow field heterogeneity and immobile porosity on non-Fickian transport in berea sandstone. Water Resour. Res. 51(10), 8273–8293 (2015)Google Scholar
  26. Haggerty, R., Gorelick, S.M.: Multiple-Rate Mass Transfer for Modeling Diffusion and Surface Reactions in Media with Pore-Scale Heterogeneity. Water Resour. Res. 31(10), 2383–2400 (1995)Google Scholar
  27. Holzner, M., Morales, V.L., Willmann, M., Dentz, M.: Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow. Phys. Rev. E 92, 013015 (2015)Google Scholar
  28. Jin, C., Langston, P.A., Pavlovskaya, G.E., Hall, M.R., Rigby, S.P.: Statistics of highly heterogeneous flow fields confined to three-dimensional random porous media. Phys. Rev. E 93, 013122 (2016)Google Scholar
  29. Kang, P.K., de Anna, P., Nunes, J.P., Bijeljic, B., Blunt, M.J., Juanes, R.: Pore-scale intermittent velocity structure underpinning anomalous transport through 3-d porous media. Geophys. Res. Lett. 41(17), 6184–6190 (2014)Google Scholar
  30. Koponen, A., Kataja, M., Timonen, J.: Tortuous flow in porous media. Phys. Rev. E 54, 406–410 (1996)Google Scholar
  31. Le Borgne, T., Gouze, P.: Non-Fickian dispersion in porous media: 2. Model validation from measurements at different scales. Water Resour. Res. 44, W06427 (2008).  https://doi.org/10.1029/2007WR006279
  32. Le Borgne, T., Bolster, D., Dentz, M., de Anna, P., Tartakovsky, A.: Effective pore-scale dispersion upscaling witha correlated continuous time random walk approach. Water Resour. Res. 47, W12538 (2011).  https://doi.org/10.1029/2011WR010457 Google Scholar
  33. Leal, L.G.: Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge Series in Chemical Engineering. Cambridge University Press, Cambridge (2007)Google Scholar
  34. Levy, M., Berkowitz, B.: Measurement and analysis of non-Fickian dispersion in heterogeneous porous media. J. Contam. Hydrol. 64(3), 203–226 (2003)Google Scholar
  35. Matyka, M., Golembiewski, J., Koza, Z.: Power-exponential velocity distributions in disordered porous media. Phys. Rev. E 93, 013110 (2016)Google Scholar
  36. Meyer, D.W., Bijeljic, B.: Pore-scale dispersion: bridging the gap between microscopic pore structure and the emerging macroscopic transport behavior. Phys. Rev. E 94(1), 013107 (2016)Google Scholar
  37. Morales, V.L., Dentz, M., Willmann, M., Holzner, M.: Stochastic dynamics of intermittent pore-scale particle motion in three-dimensional porous media: experiments and theory. Geophys. Res. Lett. 44(18), 9361–9371 (2017)Google Scholar
  38. Moroni, M., Kleinfelter, N., Cushman, J.H.: Analysis of dispersion in porous media via matched-index particle tracking velocimetry experiments. Adv. Water Resour. 30(1), 1–15 (2007)Google Scholar
  39. Mostaghimi, P., Bijeljic, B., Blunt, M., et al.: Simulation of flow and dispersion on pore-space images. SPE J. 17(04), 1–131 (2012)Google Scholar
  40. Neuman, S., Tartakovsky, D.: Perspective on theories of non-Fickian transport in heterogeneous media. Adv. Water Resour. 32(5), 670–680 (2009)Google Scholar
  41. Nicolaides, C., Cueto-Felgueroso, L., Juanes, R.: Anomalous physical transport in complex networks. Phys. Rev. E 82, 055101 (2010)Google Scholar
  42. Noetinger, B., Roubinet, D., Russian, A., Le Borgne, T., Delay, F., Dentz, M., De Dreuzy, J.-R., Gouze, P.: Random walk methods for modeling hydrodynamic transport in porous and fractured media from pore to reservoir scale. Transp. Porous Media 115, 345–385 (2016)Google Scholar
  43. Paganin, D., Mayo, S., Gureyev, T.E., Miller, P.R., Wilkins, S.W.: Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206(1), 33–40 (2002)Google Scholar
  44. Painter, S., Cvetkovic, V.: Upscaling discrete fracture network simulations: an alternative to continuum transport models. Water Resour. Res. 41, W02002 (2005)Google Scholar
  45. Pollock, D.W.: Semianalytical computation of path lines for finite-difference models. Ground Water 26(6), 743–750 (1988)Google Scholar
  46. Porta, G., Chaynikov, S., Riva, M., Guadagnini, A.: Upscaling solute transport in porous media from the pore scale to dual-and multicontinuum formulations. Water Resour. Res. 49(4), 2025–2039 (2013)Google Scholar
  47. Porta, G.M., Bijeljic, B., Blunt, M., Guadagnini, A.: Continuum-scale characterization of solute transport based on pore-scale velocity distributions. Geophys. Res. Lett. 42(18), 7537–7545 (2015)Google Scholar
  48. Puyguiraud, A., Gouze, P., Dentz, M.: Stochastic dynamics of Lagrangian pore-scale velocities in three-dimensional porous media. Water Resour. Res. 55, 1196–1217 (2019)Google Scholar
  49. Risken, H.: The Fokker-Planck Equation. Springer, Heidelberg (1996)Google Scholar
  50. Saffman, P.: A theory of dispersion in a porous medium. J. Fluid Mech. 6(03), 321–349 (1959)Google Scholar
  51. Salles, J., Thovert, J.-F., Delannay, R., Prevors, L., Auriault, J.-L., Adler, P.: Taylor dispersion in porous media. determination of the dispersion tensor. Phys. Fluids A Fluid Dyn. 5(10), 2348–2376 (1993)Google Scholar
  52. Sanchez, S., Ahlberg, P.E., Trinajstic, K.M., Mirone, A., Tafforeau, P.: Three-dimensional synchrotron virtual paleohistology: a new insight into the world of fossil bone microstructures. Microsc. Microanal. 18(5), 1095–1105 (2012)Google Scholar
  53. Sherman, T., Paster, A., Porta, G., Bolster, D.: A spatial Markov model for upscaling transport of adsorbing-desorbing solutes. J. Contam. Hydrol. 222, 31–40 (2019)Google Scholar
  54. Siena, M., Riva, M., Hyman, J., Winter, C.L., Guadagnini, A.: Relationship between pore size and velocity probability distributions in stochastically generated porous media. Phys. Rev. E 89(1), 013018 (2014)Google Scholar
  55. Smal, P., Gouze, P., Rodriguez, O.: An automatic segmentation algorithm for retrieving sub-resolution porosity from x-ray tomography images. J. Pet. Sci. Eng. 166, 198–207 (2018)Google Scholar
  56. Sund, N., Bolster, D., Mattis, S., Dawson, C.: Pre-asymptotic transport upscaling in inertial and unsteady flows through porous media. Transp. Porous Media 109(2), 411–432 (2015)Google Scholar
  57. Sund, N.L., Porta, G.M., Bolster, D.: Upscaling of dilution and mixing using a trajectory based spatial Markov random walk model in a periodic flow domain. Adv. Water Resour. 103, 76–85 (2017)Google Scholar
  58. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Physics 12(6), 620–631 (1998)Google Scholar
  59. Whitaker, S.: The Method of Averaging. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  60. Wood, B.D.: The role of scaling laws in upscaling. Adv. Water Resour. Dispers. Porous Media 32(5), 723–736 (2009)Google Scholar
  61. Wright, E., Sund, N., Richter, D., Porta, G., Bolster, D.: Upscaling mixing in highly heterogeneous porous media via a spatial Markov model. Water 11(1), 53 (2019)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Spanish National Research Council (IDAEA-CSIC)BarcelonaSpain
  2. 2.Géosciences Montpellier, CNRS-Université de MontpellierMontpellierFrance

Personalised recommendations