Colloid Transport in Porous Media: A Review of Classical Mechanisms and Emerging Topics

  • Ian L. MolnarEmail author
  • Erica Pensini
  • Md Abdullah Asad
  • Chven A. Mitchell
  • Ludwig C. Nitsche
  • Laura J. Pyrak-Nolte
  • Gastón L. Miño
  • Magdalena M. Krol


To celebrate the tenth anniversary of InterPore, we present an interdisciplinary review of colloid transport through porous media. This review aims to explore both classical colloid transport and topics that fall outside that purview and thus offer transformative insights into the physics governing transport behavior. First, we discuss the unique colloid characteristics relative to molecules and larger particles. Then, the classical advection–dispersion–filtration models (both conceptual and mathematical) of colloid transport are introduced as well as anomalous transport behaviors. Next, the forces of interaction between colloids and porous media surfaces are discussed. Fourth, applications that are interested in maximizing the transport of colloids through porous media are considered. Then the concept of motile, active biocolloids is introduced, and finally, colloid swarming as a newly recognized mode of transport is summarized.


Colloid Forces of interaction Filtration Biocolloids Swarms 



The work related to the experiments on swarm transport in fractured and porous media, simulation runs, and analysis was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, the Geosciences Research Program, under Award Number (DE-FG02-09ER16022). We also acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC). The authors would also like to acknowledge Dr. Sarah A. Charron for her helpful insights into the role of colloids in medical sciences.

Supplementary material

11242_2019_1270_MOESM1_ESM.docx (354 kb)
Supplementary material 1 (DOCX 353 kb)


  1. Adachi, Y.: Dynamic aspects of coagulation and flocculation. Adv. Coll. Interface. Sci. 56, 1–31 (1995)Google Scholar
  2. Adachi, K., Kiriyama, S., Koshioka, N.: The behaviour of a swarm of particles moving in a viscous fluid. Chem. Eng. Sci. 33, 115–121 (1978)Google Scholar
  3. Aderibigbe, A., Cheng, K., Heidari, Z., Killough, J., Fuss, T., Stephens, T.: Detection of propping agents in fractures using magnetic susceptibility measurement enhanced by magnetic nano-particles. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2014)Google Scholar
  4. Agranovski, I.E., Braddock, R.D.: Filtration of liquid aerosols on nonwettable fibrous filters. AIChE J. 44(12), 2784–2790 (1998)Google Scholar
  5. Alazraki, N.P., Eshima, D., Eshima, L.A., Herda, S.C., Murray, D.R., Vansant, J.P., Taylor, A.T.: Lymphoscintigraphy, the sentinel node concept, and the intraoperative gamma probe in melanoma, breast cancer, and other potential cancers. Semin. Nucl. Med. 27(1), 55–67 (1997)Google Scholar
  6. Albanese, A., Chan, W.C.W.: Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 5(7), 5478–5489 (2011)Google Scholar
  7. Alili, L., Sack, M., Karakoti, A.S., Teuber, S., Puschmann, K., Hirst, S.M., Reilly, C.M., Zanger, K., Stahl, W., Das, S., Seal, S., Brenneisen, P.: Combined cytotoxic and anti-invasive properties of redox-active nanoparticles in tumor–stroma interactions. Biomaterials 32(11), 2918–2929 (2011)Google Scholar
  8. Anderson, J.L.: Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21(1), 61–99 (1989)Google Scholar
  9. Aranson, I.S.: Active colloids. Phys. Usp. 56(1), 79–92 (2013)Google Scholar
  10. Arecchi, F.T., Buah-Bassuah, P.K., Francini, F., Pérez-Garcia, C., Quercioli, F.: An experimental investigation of the break-up of a liquid drop falling in a miscible fluid. Europhys. Lett. 9, 333–338 (1989)Google Scholar
  11. Assemi, S., Nalaskowski, J., Johnson, P.W.: Direct force measurements between carboxylate-modified latex microspheres and glass using atomic force microscopy. Colloids Surfaces A: Physicochem. Eng. Aspects 286, 70–77 (2006)Google Scholar
  12. Bai, R., Tien, C.: A new correlation for the initial filter coefficient under unfavorable surface interactions. J. Colloid Interface Sci. 179(2), 631–634 (1996)Google Scholar
  13. Bai, R., Tien, C.: Particle deposition under unfavorable surface interactions. J. Colloid Interface Sci. 218(2), 488–499 (1999)Google Scholar
  14. Bakanov, S.P.: Thermophoresis of aerosols: a review. J. Aerosol Sci. 22, S215–S218 (1991)Google Scholar
  15. Barthès-Biesel, D.: Computer Simulation Using Particles. CRC Press, New York (2012)Google Scholar
  16. Baskaran, A., Marchetti, M.C.: Statistical mechanics and hydrodynamics of bacterial suspensions. Proc. Natl. Acad. Sci. 106, 15567–15572 (2009)Google Scholar
  17. Bento, F.M., Camargo, F.A.O., Okeke, B.C., Frankenberger, W.T.: Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Biores. Technol. 96(9), 1049–1055 (2005)Google Scholar
  18. Berg, H.C.E.: E. coli in motion. Springer, New York (2004)Google Scholar
  19. Bergendahl, J., Grasso, D.: Prediction of colloid detachment in a model porous media: hydrodynamics. Chem. Eng. Sci. 55(9), 1523–1532 (2000)Google Scholar
  20. Berke, A.P., Turner, L., Berg, H.C., Lauga, E.: Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101, 038102 (2008)Google Scholar
  21. Berkowitz, B., Cortis, A., Dentz, M., Scher, H.: Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44(2), 49 (2006)Google Scholar
  22. Bhutra, S., Payatakes, A.C.: Experimental investigation of dendritic deposition of aerosol particles. J. Aerosol Sci. 10(5), 445–464 (1979)Google Scholar
  23. Bibette, J., Calderon, F.L., Poulin, P.: Emulsions: basic principles. Rep. Prog. Phys. 62(6), 969 (1999)Google Scholar
  24. Biswas, P., Wu, C.-Y.: Nanoparticles and the Environment. J. Air Waste Manag. Assoc. 55(6), 708–746 (2005)Google Scholar
  25. Bitton, G., Harvey, R.W.: Transport of pathogens through soil. In: Mitchell, R. (ed.) Environmental Microbiology, pp. 103–124. Wiley, New York (1992)Google Scholar
  26. Boccardo, G., Crevacore, E., Sethi, R., Icardi, M.: A robust upscaling of the effective particle deposition rate in porous media. J. Contam. Hydrol. 212, 3–13 (2018)Google Scholar
  27. Boomsma, E.R.: Particle Swarms in Confining Geometries, p. 104. Purdue University, West Lafayette (2014)Google Scholar
  28. Boomsma, E.R., Pyrak-Nolte, L.J.: Particle Swarms in Fractures, pp. 63–84. American Geophysical Union, Washington (2015)Google Scholar
  29. Boparai, H.K., Joseph, M., O’Carroll, D.M.: Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 186(1), 458–465 (2011)Google Scholar
  30. Bosse, T., Kleiser, L., Favre, J., Meiburg, E.: Settling and breakup of suspension drops. Phys. Fluids 17(9), 091107 (2005)Google Scholar
  31. Bradford, S.A., Harvey, R.W.: Future research needs involving pathogens in groundwater. Hydrogeol. J. 25(4), 931–938 (2017)Google Scholar
  32. Bradford, S.A., Torkzaban, S.: Colloid transport and retention in unsaturated porous media: a review of interface-, collector-, and pore-scale processes and models all rights reserved. Vadose Zone J. 7(2), 667–681 (2008)Google Scholar
  33. Bradford, S.A., Simunek, J., Bettahar, M., van Genuchten, M.T., Yates, S.R.: Modeling colloid attachment, straining, and exclusion in saturated porous media. Environ. Sci. Technol. 37(10), 2242–2250 (2003)Google Scholar
  34. Bradford, S.A., Torkzaban, S., Simunek, J.: Modeling colloid transport and retention in saturated porous media under unfavorable attachment conditions. Water Resour. Res. 47, W10503 (2011)Google Scholar
  35. Bradford, S.A., Morales, V.L., Zhang, W., Harvey, R.W., Packman, A.I., Mohanram, A., Welty, C.: Transport and fate of microbial pathogens in agricultural settings. Crit. Rev. Environ. Sci. Technol. 43(8), 775–893 (2012)Google Scholar
  36. Brigger, I., Dubernet, C., Couvreur, P.: Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 64, 24–36 (2012)Google Scholar
  37. Burganos, V.N., Paraskeva, C.A., Payatakes, A.C.: Three-dimensional trajectory analysis and network simulation of deep bed filtration. J. Colloid Interface Sci. 148(1), 167–181 (1992)Google Scholar
  38. Buttinoni, I., Bialké, J., Kümmel, F., Löwen, H., Bechinger, C., Speck, T.: Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys. Rev. Lett. 110(23), 238301 (2013)Google Scholar
  39. Camesano, T.A., Logan, B.E.: Influence of fluid velocity and cell concentration on the transport of motile and nonmotile bacteria in porous media. Environ. Sci. Technol. 32(11), 1699–1708 (1998)Google Scholar
  40. Camesano, T.A., Unice, K.M., Logan, B.E.: Blocking and ripening of colloids in porous media and their implications for bacterial transport. Colloids Surf. A 160(3), 291–307 (1999)Google Scholar
  41. Carraway, E.R., Hoffman, A.J., Hoffmann, M.R.: Photocatalytic oxidation of organic acids on quantum-sized semiconductor colloids. Environ. Sci. Technol. 28(5), 786–793 (1994)Google Scholar
  42. Chandler, D.: Interfaces and the driving force of hydrophilic assembly. Nature 437, 640–647 (2005)Google Scholar
  43. Chang, Y.-I.M., Whang, J.-J.: Deposition of Brownian particles in the presence of energy barriers of DLVO theory: effect of the dimensionless groups. Chem. Eng. Sci. 53(23), 3923–3939 (1998)Google Scholar
  44. Chapman, D.S., Critchlow, P.R.: Formation of vortex rings from falling drops. J. Fluid Mech. 29(1), 177–185 (1967)Google Scholar
  45. Cho, K., Wang, X., Nie, S., Chen, Z., Shin, D.M.: Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14(5), 1310–1316 (2008)Google Scholar
  46. Chowdhury, A.I.A., Krol, M.M., Kocur, C.M., Boparai, H.K., Weber, K.P., Sleep, B.E., O’Carroll, D.M.: nZVI injection into variably saturated soils: field and modeling study. J. Contam. Hydrol. 183, 16–28 (2015)Google Scholar
  47. Clément, E., Lindner, A., Douarche, C., Auradou, H.: Bacterial suspensions under flow. Eur. Phys. J. Special Top. 225, 2389–2406 (2016)Google Scholar
  48. Cocuzza, M., Opirri, C., Rocca, V., Verga, F.: Current and future nanotech applications in the oil industry. American Journal of Applied Sciences 9(6), 784–793 (2012)Google Scholar
  49. Coffey, W.T., Kalmykov, Y.P.: The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering. World Scientific, Singapore (2004)Google Scholar
  50. Contal, P., Simao, J., Thomas, D., Frising, T., Callé, S., Appert-Collin, J.C., Bémer, D.: Clogging of fibre filters by submicron droplets. Phenomena and influence of operating conditions. J. Aerosol Sci. 35(2), 263–278 (2004)Google Scholar
  51. Contino, M., Lushi, E., Tuval, I., Kantsler, V., Polin, M.: Microalgae scatter off solid surfaces by hydrodynamic and contact forces. Phys. Rev. Lett. 115, 258102 (2015)Google Scholar
  52. Cortis, A., Harter, T., Hou, L., Atwill, E.R., Packman, A.I., Green, P.G.: Transport of Cryptosporidium parvum in porous media: long-term elution experiments and continuous time random walk filtration modeling. Water Resour. Res. 42(12), 1–12 (2006)Google Scholar
  53. Cowell, C., Li-In-On, R., Vincent, B.: Reversible flocculation of sterically-stabilised dispersions. J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Condens. Phases 74, 337–347 (1978)Google Scholar
  54. de Jonge, H., Jacobsen, O.H., de Jonge, L.W., Moldrup, P.: Particle-facilitated transport of prochloraz in undisturbed sandy loam soil columns. J. Environ. Qual. 27(6), 1495–1503 (1998)Google Scholar
  55. de Jonge, L.W., Kjaergaard, C., Moldrup, P.: Colloids and colloid-facilitated transport of contaminants in soils. Vadose Zone J. 3(2), 321–325 (2004)Google Scholar
  56. DeFlaun, M.F., Tanzer, A.S., McAteer, A.L., Marshall, B., Levy, S.B.: Development of an adhesion assay and characterization of an adhesion-deficient mutant of pseudomonas fluorescens. Appl. Environ. Microbiol. 56(1), 112–119 (1990)Google Scholar
  57. DeFlaun, M.F., Oppenheimer, S.R., Streger, S., Condee, C.W., Fletcher, M.: Alterations in adhesion, transport, and membrane characteristics in an adhesion-deficient pseudomonad. Appl. Environ. Microbiol. 65(2), 759–765 (1999)Google Scholar
  58. Deichmann, U.: “Molecular” versus “colloidal”: Controversies in biology and biochemistry, 1900–1940 (2007)Google Scholar
  59. Di Leonardo, R.: Controlled collective motions. Nat. Mater. 15, 1057–1058 (2016)Google Scholar
  60. Dreyfus, R., Baudry, J., Roper, M.L., Fermigier, M., Stone, H.A., Bibette, J.: Microscopic artificial swimmers. Nature 437, 862 (2005)Google Scholar
  61. Dunphy Guzman, K.A., Finnegan, M.P., Banfield, J.F.: Influence of surface potential on aggregation and transport of titania nanoparticles. Environ. Sci. Technol. 40(24), 7688–7693 (2006)Google Scholar
  62. Ebbens, S.J.: Active colloids: progress and challenges towards realising autonomous applications. Curr. Opin. Colloid Interface Sci. 21, 14–23 (2016)Google Scholar
  63. Ebel, J.P., Anderson, J.L., Prieve, D.C.: Diffusiophoresis of latex particles in electrolyte gradients. Langmuir 4(2), 396–406 (1988)Google Scholar
  64. Elimelech, M.: Predicting collision efficiencies of colloidal particles in porous media. Water Res. 26(1), 1–8 (1992)Google Scholar
  65. Elimelech, M., Omelia, C.R.: Kinetics of deposition of colloidal particles in porous-media. Environ. Sci. Technol. 24(10), 1528–1536 (1990a)Google Scholar
  66. Elimelech, M., Omelia, C.R.: Effect of particle-size on collision efficiency in the deposition of brownian particles with electrostatic energy barriers. Langmuir 6(6), 1153–1163 (1990b)Google Scholar
  67. Elimelech, M., John, G., Xiadong, J.: Particle Deposition and Aggregation: Measurement, Modelling and Simulation. Butterworth-Heinemann, Oxford (2013)Google Scholar
  68. Ezhilan, B., Saintillan, D.: Transport of a dilute active suspension in pressure-driven channel flow. J. Fluid Mech. 777, 482–522 (2015)Google Scholar
  69. Feke, D.L., Prabhu, N.D., Mann, J.A.: Formulation of the short-range repulsion between spherical colloidal particle. J. Phys. Chem. B 88(23), 5735–5739 (1984)Google Scholar
  70. Figueroa-Morales, N., Miño, G.L., Rivera, A., Caballero, R., Clément, E., Altshuler, E., Lindner, A.: Living on the edge: transfer and traffic of E. coli in a confined flow. Soft Matter 11, 6284–6293 (2015)Google Scholar
  71. Fisk, W.J., Faulkner, D., Palonen, J., Seppanen, O.: Performance and costs of particle air filtration technologies. Indoor Air 12(4), 223–234 (2002)Google Scholar
  72. Flessner, M.F., Choi, J., Credit, K., Deverkadra, R., Henderson, K.: Resistance of tumor interstitial pressure to the penetration of intraperitoneally delivered antibodies into metastatic ovarian tumors. Clin. Cancer Res. 11(8), 3117 (2005)Google Scholar
  73. Florea, D., Musa, S., Huyghe, J.M.R., Wyss, H.M.: Long-range repulsion of colloids driven by ion exchange and diffusiophoresis. Proc. Natl. Acad. Sci. U.S.A. 111(18), 6554–6559 (2014)Google Scholar
  74. Fong, T.-T., Mansfield, L.S., Wilson, D.L., Schwab, D.J., Molloy, S.L., Rose, J.B.: Massive microbiological groundwater contamination associated with a waterborne outbreak in Lake Erie, South Bass Island, Ohio. Environ. Health Perspect. 115(6), 856–864 (2007)Google Scholar
  75. Fontes, D.E., Mills, A.L., Hornberger, G.M., Herman, J.S.: Physical and chemical factors influencing transport of microorganisms through porous media. Appl. Environ. Microbiol. 57(9), 2473–2481 (1991)Google Scholar
  76. Frising, T., Thomas, D., Bémer, D., Contal, P.: Clogging of fibrous filters by liquid aerosol particles: experimental and phenomenological modelling study. Chem. Eng. Sci. 60(10), 2751–2762 (2005)Google Scholar
  77. Frymier, P.D., Ford, R.M., Berg, H.C., Cummings, P.T.: Three-dimensional tracking of motile bacteria near a solid planar surface. Proc. Natl. Acad. Sci. U.S.A. 92(13), 6195–6199 (1995)Google Scholar
  78. Fujimori, K., Covell, D.G., Fletcher, J.E., Weinstein, J.N.: A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier. J. Nucl. Med.: Off. Publ. Soc. Nucl. Med. 31(7), 1191–1198 (1990)Google Scholar
  79. Gallay, A., De Valk, H., Cournot, M., Ladeuil, B., Hemery, C., Castor, C., Bon, F., Mégraud, F., Le Cann, P., Desenclos, J.C.: A large multi-pathogen waterborne community outbreak linked to faecal contamination of a groundwater system, France, 2000. Clin. Microbiol. Infect. 12(6), 561–570 (2006)Google Scholar
  80. Gaveau, A., Coetsier, C., Roques, C., Bacchin, P., Dague, E.: Bacteria transfer by deformation through microfiltration membrane. J. Membr. Sci. 523, 446–455 (2017)Google Scholar
  81. Gentry, T., Rensing, C., Pepper, I.A.N.: New approaches for bioaugmentation as a remediation technology. Crit. Rev. Environ. Sci. Technol. 34(5), 447–494 (2004)Google Scholar
  82. Ginn, T.R.: On the distribution of multicomponent mixtures over generalized exposure time in subsurface flow and reactive transport: theory and formulations for residence-time-dependent sorption/desorption with memory. Water Resour. Res. 36(10), 2885–2893 (2000)Google Scholar
  83. Ginn, T.R., Wood, B.D., Nelson, K.E., Scheibe, T.D., Murphy, E.M., Clement, T.P.: Processes in microbial transport in the natural subsurface. Adv. Water Resour. 25(8–12), 1017–1042 (2002)Google Scholar
  84. Goldberg, E., Scheringer, M., Bucheli, T.D., Hungerbühler, K.: Critical assessment of models for transport of engineered nanoparticles in saturated porous media. Environ. Sci. Technol. 48(21), 12732–12741 (2014)Google Scholar
  85. Goodman, T.T., Chen, J., Matveev, K., Pun, S.H.: Spatio-temporal modeling of nanoparticle delivery to multicellular tumor spheroids. Biotechnol. Bioeng. 101(2), 388–399 (2008)Google Scholar
  86. Grasso, D., Subramaniam, K., Butkus, M., Strevett, K., Bergendahl, J.: A review of non-DLVO interactions in environmental colloidal systems. Rev. Environ. Sci. Biotechnol. 1(1), 17–38 (2002)Google Scholar
  87. Hagens, W.I., Oomen, A.G., de Jong, W.H., Cassee, F.R., Sips, A.: What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul. Toxicol. Pharmacol. 49(3), 217–229 (2007)Google Scholar
  88. Hahn, M.W., O’Melia, C.R.: Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: some concepts and applications. Environ. Sci. Technol. 38(1), 210–220 (2004)Google Scholar
  89. Haig, S.J., Collins, G., Davies, R.L., Dorea, C.C., Quince, C.: Biological aspects of slow sand filtration: past, present and future. Water Sci. Tech. Water Supply 11(4), 468–472 (2011)Google Scholar
  90. Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media. Kluwer, Alphen aan den Rijn (1983)Google Scholar
  91. Harvey, R.W.: Microorganisms as tracers in groundwater injection and recovery experiments: a review. FEMS Microbiol. Rev. 20, 461–472 (1997)Google Scholar
  92. Harvey, R.W., George, L.H., Smith, R.L., LeBlanc, D.R.: Transport of microspheres and indigenous bacteria through a sandy aquifer: results of natural-and forced-gradient tracer experiments. Environ. Sci. Technol. 23(1), 51–56 (1989)Google Scholar
  93. He, F., Zhang, M., Qian, T., Zhao, D.: Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: column experiments and modeling. J. Colloid Interface Sci. 334(1), 96–102 (2009)Google Scholar
  94. Henn, K.W., Waddill, D.W.: Utilization of nanoscale zero-valent iron for source remediation—A case study. Remediation Journal 16(2), 57–77 (2006)Google Scholar
  95. Hermansson, M.: The DLVO theory in microbial adhesion. Colloids Surf. B 14(1), 105–119 (1999)Google Scholar
  96. Hernandez-Ortiz, J.P., Stoltz, C.G., Graham, M.D.: Transport and collective dynamics in suspensions of confined swimming particles. Phys. Rev. Lett. 95, 204501 (2005)Google Scholar
  97. Hill, J., Kalkanci, O., McMurry, J.L., Koser, H.: Hydrodynamic surface interactions enable Escherichia coli to seek efficient routes to swim upstream. Phys. Rev. Lett. 98, 068101 (2007)Google Scholar
  98. Hoffmann, J.E.: Recovery of platinum-group metals from gabbroic rocks metals from auto catalysts. JOM 40(6), 40–44 (1988)Google Scholar
  99. Hori, K., Matsumoto, S.: Bacterial adhesion: from mechanism to control. Biochem. Eng. J. 48(3), 424–434 (2010)Google Scholar
  100. Hornberger, G.M., Mills, A.L., Herman, J.S.: Bacterial transport in porous media: evaluation of a model using laboratory observations. Water Resour. Res. 28(3), 915–923 (1992)Google Scholar
  101. Hotze, E.M., Phenrat, T., Lowry, G.V.: Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J. Environ. Qual. 39(6), 1909–1924 (2010)Google Scholar
  102. Hughes, D.: Transvascular fluid dynamics. Vet. Anaesth. Analg. 27(1), 63–69 (2000)Google Scholar
  103. Hwang, C.C., Wang, L., Lu, W., Ruan, G., Kini, G.C., Xiang, C., Samuel, E.L.G., Shi, W., Kan, A., Wong, M., Tomson, M.B., Tour, J.: HIghly stable carbon nanoparticles designed for downhole hydrocarbon detection. Energy Environ. Sci. 5, 8304 (2012)Google Scholar
  104. Iliev, O., Kirsch, R., Lakdawala, Z., Rief, S., Steiner, K.: Modeling and simulation of filtration processes. In: Neunzert, H., Prätzel-Wolters, D. (eds.) Currents in Industrial Mathematics: From Concepts to Research to Education, pp. 163–228. Springer, Berlin (2015)Google Scholar
  105. Israelachvili, J.: Intermolecular and Surface Forces. Academic Press, San Diego (1992)Google Scholar
  106. Israelachvili, J.N.: 11—contrasts between intermolecular, interparticle, and intersurface forces. In: Israelachvili, J.N. (ed.) Intermolecular and Surface Forces, pp. 205–222. Academic Press, San Diego (2011)Google Scholar
  107. Israelachvili, J., Wennerström, H.: Role of hydration and water structure in biological and colloidal interactions. Nature 379(6562), 219 (1996)Google Scholar
  108. Jain, R.K.: Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. JNCI: J. Natl. Cancer Inst. 81(8), 570–576 (1989)Google Scholar
  109. Jana, S., Eddins, A., Spoon, C., Jung, S.: Somersault of Paramecium in extremely confined environments. Sci. Rep. 5, 13148 (2015)Google Scholar
  110. Jiang, X., Tong, M., Lu, R., Kim, H.: Transport and deposition of ZnO nanoparticles in saturated porous media. Colloids Surf. A 401, 29–37 (2012)Google Scholar
  111. Johnson, P.R., Elimelech, M.: Dynamics of colloid deposition in porous-media—blocking based on random sequential adsorption. Langmuir 11(3), 801–812 (1995)Google Scholar
  112. Johnson, W.P., Hilpert, M.: Upscaling colloid transport and retention under unfavorable conditions: linking mass transfer to pore and grain topology. Water Resour. Res. 49(9), 5328–5341 (2013)Google Scholar
  113. Kamai, T., Nassar, M.K., Nelson, K.E., Ginn, T.R.: Colloid filtration prediction by mapping the correlation-equation parameters from transport experiments in porous media. Water Resour. Res. 51(11), 8995–9012 (2015)Google Scholar
  114. Kantsler, V., Dunkel, J., Polin, M., Goldstein, R.E.: Ciliary contact interactions dominate surface scattering of swimming eukaryotes. Proc. Natl. Acad. Sci. USA 110(4), 1187–1192 (2013)Google Scholar
  115. Kasel, D., Bradford, S.A., Šimůnek, J., Heggen, M., Vereecken, H., Klumpp, E.: Transport and retention of multi-walled carbon nanotubes in saturated porous media: effects of input concentration and grain size. Water Res. 47(2), 933–944 (2013)Google Scholar
  116. Keh, H.J., Anderson, J.L.: Boundary effects on electrophoretic motion of colloidal spheres. J. Fluid Mech. 153, 417–439 (2006)Google Scholar
  117. Kim, S., Karrila, S.J.: Microhydrodynamics: Principles and Selected Applications. Dover, Mineola (2005)Google Scholar
  118. Kim, C., Lee, S.: Effect of seepage velocity on the attachment efficiency of TiO2 nanoparticles in porous media. J. Hazard. Mater. 279, 163–168 (2014)Google Scholar
  119. Kim, I.G., Hwang, M.P., Du, P., Ko, J., Ha, C.-W., Do, S.H., Park, K.: Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing. Biomaterials 50, 75–86 (2015)Google Scholar
  120. Kim, M.K., Ingremeau, F., Zhao, A., Bassler, B.L., Stone, H.A.: Local and global consequences of flow on bacterial quorum sensing. Nat. Microbiol. 1, 15005 (2018)Google Scholar
  121. Klaine, S.J., Alvarez, P.J.J., Batley, G.E., Fernandes, T.F., Handy, R.D., Lyon, D.Y., Mahendra, S., McLaughlin, M.J., Lead, J.R.: Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 27(9), 1825–1851 (2008)Google Scholar
  122. Kobayashi, M., Nanaumi, H., Muto, Y.: Initial deposition rate of latex particles in the packed bed of zirconia beads. Colloids Surfaces A: Physicochem. Eng. Aspects 347, 2–7 (2009)Google Scholar
  123. Kocur, C.M., Chowdhury, A.I., Sakulchaicharoen, N., Boparai, H.K., Weber, K.P., Sharma, P., Krol, M.M., Austrins, L., Peace, C., Sleep, B.E., O’Carroll, D.M.: Characterization of nZVI mobility in a field scale test. Environ. Sci. Technol. 48(5), 2862–2869 (2014)Google Scholar
  124. Kojima, M., Hinch, E.J., Acrivos, A.: The formation and expansion of a toroidal drop moving in a viscous fluid. Phys. Fluids 27, 19–32 (1984)Google Scholar
  125. Korber, D.R., Lawrence, J.R., Sutton, B., Caldwell, D.E.: Effect of laminar flow velocity on the kinetics of surface recolonization by Mot + and Mot − Pseudomonas fluorescens. Microb. Ecol. 18(1), 1–19 (1989)Google Scholar
  126. Korber, D.R., Lawrence, J.R., Caldwell, D.E.: Effect of motility on surface colonization and reproductive success of Pseudomonas fluorescens in dual-dilution continuous culture and batch culture systems. Appl. Environ. Microbiol. 60(5), 1421 (1994)Google Scholar
  127. Krol, M.M., Oleniuk, A.J., Kocur, C.M., Sleep, B.E., Bennett, P., Xiong, Z., O’Carroll, D.M.: A field-validated model for in situ transport of polymer-stabilized nZVI and implications for subsurface injection. Environ. Sci. Technol. 47(13), 7332–7340 (2013)Google Scholar
  128. Landkamer, L.L., Harvey, R.W., Scheibe, T.D., Ryan, J.N.: Colloid transport in saturated porous media: elimination of attachment efficiency in a new colloid transport model. Water Resour. Res. 49(5), 2952–2965 (2013)Google Scholar
  129. Lanphere, J.D., Luth, C.J., Walker, S.L.: Effects of solution chemistry on the transport of graphene oxide in saturated porous media. Environ. Sci. Technol. 47(9), 4255–4261 (2013)Google Scholar
  130. Lauga, E., DiLuzio, W.R., Whitesides, G.M., Stone, H.A.: Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90, 400–412 (2006)Google Scholar
  131. Lee, K.W., Liu, B.Y.H.: Theoretical study of aerosol filtration by fibrous filters. Aerosol Sci. Technol. 1(2), 147–161 (1982)Google Scholar
  132. Lee, D.J., Wang, C.H.: Theories of cake filtration and consolidation and implications to sludge dewatering. Water Res. 34(1), 1–20 (2000)Google Scholar
  133. Li, X.Q., Johnson, W.P.: Nonmonotonic variations in deposition rate coefficients of microspheres in porous media under unfavorable deposition conditions. Environ. Sci. Technol. 39(6), 1658–1665 (2005)Google Scholar
  134. Li, Q., Logan, B.E.: Enhancing bacterial transport for bioaugmentation of aquifers using low ionic strength solutions and surfactants. Water Res. 33(4), 1090–1100 (1999)Google Scholar
  135. Li, X.Q., Zhang, P.F., Lin, C.L., Johnson, W.P.: Role of hydrodynamic drag on microsphere deposition and re-entrainment in porous media under unfavorable conditions. Environ. Sci. Technol. 39(11), 4012–4020 (2005)Google Scholar
  136. Li, X.-Q., Elliott, D.W., Zhang, W.-X.: Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit. Rev. Solid State Mater. Sci. 31(4), 111–122 (2006)Google Scholar
  137. Li, Y., Wang, Y., Pennell, K.D., Abriola, L.M.: Investigation of the transport and deposition of fullerene (C60) nanoparticles in quartz sands under varying flow conditions. Environ. Sci. Technol. 42(19), 7174–7180 (2008)Google Scholar
  138. Li, G., Bensson, J., Nisimova, L., Munger, D., Mahautmr, P., Tang, J.X., Maxey, M.R., Brun, Y.V.: Accumulation of swimming bacteria near a solid surface. Phys. Rev. E 84, 041932 (2011)Google Scholar
  139. Lin, D., Tian, X., Wu, F., Xing, B.: Fate and transport of engineered nanomaterials in the environment. J. Environ. Qual. 39(6), 1896–1908 (2010)Google Scholar
  140. Lin, Y., Tan, J.H., Phan-Thien, N., Khoo, B.C.: Settling of particle-suspension drops at low to moderate Reynolds numbers. Eur. J. Mech. B-Fluids 61(1), 72–76 (2017)Google Scholar
  141. Lindqvist, R., Cho, J.S., Enfield, C.G.: A kinetic model for cell density dependent bacterial transport in porous media. Water Resour. Res. 30(12), 3291–3299 (1994)Google Scholar
  142. Liu, Q., Dong, M., Ma, S., Tu, Y.: Surfactant enhanced alkaline flooding for Western Canadian heavy oil recovery. Colloids Surf. A 293(1), 63–71 (2007)Google Scholar
  143. Liu, X.Y., O’Carroll, D.M., Petersen, E.J., Huang, Q.G., Anderson, C.L.: Mobility of multiwalled carbon nanotubes in porous media. Environ. Sci. Technol. 43(21), 8153–8158 (2009)Google Scholar
  144. Logan, B., Jewett, D., Arnold, R., Bouwer, E., O’Melia, C.: Clarification of clean-bed filtration models. J. Environ. Eng. 121(12), 869–873 (1995)Google Scholar
  145. Long, W., Hilpert, M.: A correlation for the collector efficiency of Brownian particles in clean-bed filtration in sphere packings by a lattice-boltzmann method. Environ. Sci. Technol. 43(12), 4419–4424 (2009)Google Scholar
  146. Long, W., Huang, H., Serlemitsos, J., Liu, E., Reed, A.H., Hilpert, M.: Pore-scale study of the collector efficiency of nanoparticles in packings of nonspherical collectors. Colloids Surf. A 358(1–3), 163–171 (2010)Google Scholar
  147. López, H.M., Gachelin, J., Douarche, C., Auradou, H., Clément, E.: Turning bacteria suspensions into superfluids. Phys. Rev. Lett. 115, 028301 (2015)Google Scholar
  148. Ma, H., Johnson, W.P.: Colloid retention in porous media of various porosities: predictions by the hemispheres-in-cell model. Langmuir 26(3), 1680–1687 (2010)Google Scholar
  149. Ma, H., Pedel, J., Fife, P., Johnson, W.P.: Hemispheres-in-cell geometry to predict colloid deposition in porous media. Environ. Sci. Technol. 43(22), 8573–8579 (2009)Google Scholar
  150. Ma, H., Pazmino, E., Johnson, W.P.: Surface heterogeneity on hemispheres-in-cell model yields all experimentally-observed non-straining colloid retention mechanisms in porous media in the presence of energy barriers. Langmuir 27(24), 14982–14994 (2011)Google Scholar
  151. Mac Kenzie, W.R., Hoxie, N.J., Proctor, M.E., Gradus, M.S., Blair, K.A., Peterson, D.E., Kazmierczak, J.J., Addiss, D.G., Fox, K.R., Rose, J.B., Davis, J.P.: A massive outbreak in Milwaukee of Cryptosporidium infection transmitted through the public water supply. New Engl J Med 331(3), 161–167 (1994)Google Scholar
  152. Machu, G., Meile, W., Nitsche, L.C., Schaflinger, U.: Coalescence, torus formation and breakup of sedimenting drops: experiments and computer simulations. J. Fluid Mech. 447, 299–336 (2001a)Google Scholar
  153. Machu, G., Meile, L.N.W., Schaflinger, U.: The motion of a swarm of particles traveling through a quiescent viscous fluid. Zeitschrift Fur Angewandte Mathematik Und Mechanik 81, S547–S548 (2001b)Google Scholar
  154. Manzoor, A.A., Lindner, L.H., Landon, C.D., Park, J.-Y., Simnick, A.J., Dreher, M.R., Das, S., Hanna, G., Park, W., Chilkoti, A., Koning, G.A., ten Hagen, T.L.M., Needham, D., Dewhirst, M.W.: Overcoming limitations in nanoparticle drug delivery: triggered, intravascular release to improve drug penetration into tumors. Cancer Res. 72, 5566–5575 (2012)Google Scholar
  155. Marchiani, S., Tamburrino, L., Muratori, M., Baldi, E.: Epididymal sperm transport and fertilization. In: Simoni, M., Huhtaniemi, I.T. (eds.) Endocrinology of the Testis and Male Reproduction. Springer, Cham (2017)Google Scholar
  156. Mattison, N.T., O’Carroll, D.M., Kerry Rowe, R., Petersen, E.J.: Impact of porous media grain size on the transport of multi-walled carbon nanotubes. Environ. Sci. Technol. 45(22), 9765–9775 (2011)Google Scholar
  157. McCarthy, J.F., McKay, L.D.: Colloid transport in the subsurface. Vadose Zone J. 3(2), 326–337 (2004)Google Scholar
  158. McCarthy, J.F., Zachara, J.M.: Subsurface transport of contaminants. Environ. Sci. Technol. 23(5), 496–502 (1989)Google Scholar
  159. Meng, H., Xue, M., Xia, T., Ji, Z., Tarn, D.Y., Zink, J.I., Nel, A.E.: Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano 5(5), 4131–4144 (2011)Google Scholar
  160. Messina, F., Marchisio, D.L., Sethi, R.: An extended and total flux normalized correlation equation for predicting single-collector efficiency. J. Colloid Interface Sci. 446, 185–193 (2015)Google Scholar
  161. Metzger, B., Nicolas, M., Guazzelli, É.: Falling clouds of particles in viscous fluids. J. Fluid Mech. 580, 283–301 (2007)Google Scholar
  162. Miettinen, I.T., Zacheus, O., von Bonsdorff, C.H., Vartiainen, T.: Waterborne epidemics in Finland in 1998–1999. Water Sci. Technol. 43(12), 67 (2001)Google Scholar
  163. Miño, G.L., Baabour, M., Chertcoff, R., Gutkind, G., Clément, E., Auradou, H., Ippolito, I.: E. coli accumulation behind an obstacle. Advances in Microbiology 8, 451–464 (2018)Google Scholar
  164. Mirzakhanloo, M., Alam, M.-R.: Flow characteristics of Chlamydomonas result in purely hydrodynamic scattering. Phys. Rev. E 98, 012603 (2018)Google Scholar
  165. Molnar, I.L., O’Carroll, D.M., Gerhard, J.I.: Impact of surfactant-induced wettability alterations on DNAPL invasion in quartz and iron oxide-coated sand systems. J. Contam. Hydrol. 119(1–4), 1–12 (2011)Google Scholar
  166. Molnar, I.L., Johnson, W.P., Gerhard, J.I., Willson, C.S., O’Carroll, D.M.: Predicting colloid transport through saturated porous media: a critical review. Water Resour. Res. 51, 6804–6845 (2015a)Google Scholar
  167. Molnar, I.L., Gerhard, J.I., Willson, C.S., O’Carroll, D.M.: The impact of immobile zones on the transport and retention of nanoparticles in porous media. Water Resour. Res. 51, 8973–8994 (2015b)Google Scholar
  168. Mondal, P.K., Furbacher, P.D., Cui, Z., Krol, M.M., Sleep, B.E.: Transport of polymer stabilized nano-scale zero-valent iron in porous media. J. Contam. Hydrol. 212, 65 (2017)Google Scholar
  169. Mornet, S., Vasseur, S., Grasset, F., Duguet, E.: Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14(14), 2161–2175 (2004)Google Scholar
  170. Mussler, M., Rafaï, S., Peyla, P., Wagner, C.: Effective viscosity of non-gravitactic Chlamydomonas Reinhardtii microswimmer suspensions. EPL 101, 54004 (2013)Google Scholar
  171. Myłyk, A., Meile, W., Brenn, G., Ekiel-Jezewska, M.L.: Break-up of suspension drops settling under gravity in a viscous fluid close to a vertical wall. Phys. Fluids 23(6), 1–15 (2011)Google Scholar
  172. Nel, A.E., Mädler, L., Velegol, D., Xia, T., Hoek, E.M., Somasundaran, P., Klaessig, F., Castranova, V., Thompson, M.: Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8(7), 543 (2009)Google Scholar
  173. Nelson, K.E., Ginn, T.R.: Colloid filtration theory and the Happel sphere-in-cell model revisited with direct numerical simulation of colloids. Langmuir 21(6), 2173–2184 (2005)Google Scholar
  174. Nelson, K.E., Ginn, T.R.: New collector efficiency equation for colloid filtration in both natural and engineered flow conditions. Water Resour. Res. 47, 17 (2011)Google Scholar
  175. Nelson, K.E., Massoudieh, A., Ginn, T.R.: E. Coli fate and transport in the Happel sphere-in-cell model. Adv. Water Resour. 30(67), 1492–1504 (2007)Google Scholar
  176. Netti, P.A., Hamberg, L.M., Babich, J.W., Kierstead, D., Graham, W., Hunter, G.J., Wolf, G.L., Fischman, A., Boucher, Y., Jain, R.K.: Enhancement of fluid filtration across tumor vessels: implication for delivery of macromolecules. Proc. Natl. Acad. Sci. 96(6), 3137–3142 (1999)Google Scholar
  177. Nichols, G., Byard, S., Bloxham, M.J., Botterill, J., Dawson, N.J., Dennis, A., Diart, V., North, N.C., Sherwood, J.D.: A review of the terms agglomerate and aggregate with a recommendation for nomenclature used in powder and particle characterization. J. Pharm. Sci. 91(10), 2103–2109 (2002)Google Scholar
  178. Ninham, B.W.: On progress in forces since the DLVO theory. Adv. Coll. Interface. Sci. 83(1–3), 1–17 (1999)Google Scholar
  179. Nitsche, J.M., Batchelor, G.K.: Break-up of a falling drop containing dispersed particles. J. Fluid Mech. 340, 161–175 (1997)Google Scholar
  180. Northrup, E.: A photographic study of vortex rings in liquids. Nature 88, 463–468 (1912)Google Scholar
  181. O’Connor, D.R.: Part One Report of the Walkerton Inquiry: The Events of May 2000 and Related Issues, O.M.o.t.A. General, Editor. Queen’s Printer for Ontario (2002)Google Scholar
  182. Oberdörster, G., Stone, V., Donaldson, K.: Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1(1), 2–25 (2007)Google Scholar
  183. O’Carroll, D., Sleep, B., Krol, M., Boparai, H., Kocur, C.: Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv. Water Resour. 51, 104–122 (2013)Google Scholar
  184. Ohshima, H.: Electrokinetics of soft particles. Colloid Polym. Sci. 285(13), 1411–1421 (2007)Google Scholar
  185. Olivier, J., Vaxelaire, J., Vorobiev, E.: Modelling of cake filtration: an overview. Sep. Sci. Technol. 42(8), 1667–1700 (2007)Google Scholar
  186. Ouyang, Y., Shinde, D., Mansell, R.S., Harris, W.: Colloid-enhanced transport of chemicals in subsurface environments: a review. Crit. Rev. Environ. Sci. Technol. 26(2), 189–204 (1996)Google Scholar
  187. Palacci, J., Cottin-Bizonne, C., Ybert, C., Bocquet, L.: Sedimentation and effective temperature of active colloidal suspensions. Phys. Rev. Lett. 105, 088304 (2010)Google Scholar
  188. Pankhurst, Q.A., Connolly, J., Jones, S.K., Dobson, J.: Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36(13), R167 (2003)Google Scholar
  189. Pappenheimer, J.R.: Filtration, diffusion and molecular sieving through peripheral capillary membranes a contribution to the pore theory of capillary permeability. Am. J. Physiol. 167(1), 13–46 (1951)Google Scholar
  190. Paraskeva, C.A., Burganos, V.N., Payatakes, A.C.: three-dimensional trajectory analysis of particle deposition in constricted tubes. Chem. Eng. Commun. 108(1), 23–48 (1991)Google Scholar
  191. Paxton, W.F., Sen, A., Mallouk, T.E.: Motility of catalytic nanoparticles through self-generated forces. Chem. A Eur. J. 11(22), 6462–6470 (2005)Google Scholar
  192. Paxton, W.F., Sundararajan, S., Mallouk, T.E., Sen, A.: Chemical locomotion. Angew. Chem. Int. Ed. 45(33), 5420–5429 (2006)Google Scholar
  193. Payatakes, A.C., Gradoń, L.: Dendritic deposition of aerosol particles in fibrous media by inertial impaction and interception. Chem. Eng. Sci. 35(5), 1083–1096 (1980a)Google Scholar
  194. Payatakes, A.C., Gradoń, L.: Dendritic deposition of aerosols by convective Brownian diffusion for small, intermediate and high particle Knudsen numbers. AIChE J. 26(3), 443–454 (1980b)Google Scholar
  195. Payatakes, A.C., Tien, C., Turian, R.M.: Part II. Case study of the effect of the dimensionless groups and comparison with experimental data. AIChE J. 20(5), 900–905 (1974a)Google Scholar
  196. Payatakes, A.C., Tien, C., Turian, R.M.: Trajectory calculation of particle deposition in deep bed filtration: part I. Model formulation. AIChE J. 20(5), 889–900 (1974b)Google Scholar
  197. Payet, S., Boulaud, D., Madelaine, G., Renoux, A.: Penetration and pressure drop of a HEPA filter during loading with submicron liquid particles. J. Aerosol Sci. 23(7), 723–735 (1992)Google Scholar
  198. Pazmino, E.F., Trauscht, J., Dame, B., Johnson, W.P.: Power law size-distributed heterogeneity explains colloid retention on soda lime glass in the presence of energy barriers. Langmuir 30(19), 5412–5421 (2014)Google Scholar
  199. Pecora, R.: Dynamic light scattering measurement of nanometer particles in liquids. J. Nanopart. Res. 2(2), 123–131 (2000)Google Scholar
  200. Pensini, E., Yip, C.M., O’Carroll, D.M., Sleep, B.E.: Effect of water chemistry and aging on iron-mica interaction forces: implications for iron particle transport. Langmuir 28(28), 10453–10463 (2012a)Google Scholar
  201. Pensini, E., Sleep, B.E., Yip, C.M., O’Carroll, D.: Forces of interactions between bare and polymer-coated iron and silica: effect of ph, ionic strength, and humic acids. Environ. Sci. Technol. 46(24), 13401–13408 (2012b)Google Scholar
  202. Pensini, E., Yip, C.M., O’Carroll, D., Sleep, B.E.: Carboxymethyl cellulose binding to mineral substrates: characterization by atomic force microscopy–based Force spectroscopy and quartz-crystal microbalance with dissipation monitoring. J. Colloid Interface Sci. 402, 58–67 (2013a)Google Scholar
  203. Pensini, E., Yip, C.M., O’Carroll, D.M., Sleep, B.E.: Forces of interaction between fresh iron particles and iron oxide (magnetite): effect of water chemistry and polymer coatings. Colloids Surfaces A 433, 104–110 (2013b)Google Scholar
  204. Pensini, E., Yip, C.M., O’Carroll, D.M., Sleep, B.E.: Forces of interactions between iron and aluminum silicates: effect of water chemistry and polymer coatings. J. Colloid Interface Sci. 411, 8–15 (2013c)Google Scholar
  205. Perrault, S.D., Walkey, C., Jennings, T., Fischer, H.C., Chan, W.C.W.: Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 9(5), 1909–1915 (2009)Google Scholar
  206. Petosa, A.R., Jaisi, D.P., Quevedo, I.R., Elimelech, M., Tufenkji, N.: Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ. Sci. Technol. 44(17), 6532–6549 (2010)Google Scholar
  207. Phenrat, T., Saleh, N., Sirk, K., Tilton, R.D., Lowry, G.V.: Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ. Sci. Technol. 41(1), 284–290 (2007)Google Scholar
  208. Phenrat, T., Long, T.C., Lowry, G.V., Veronesi, B.: Partial oxidation (“aging”) and surface modification decrease the toxicity of nanosized zerovalent iron. Environ. Sci. Technol. 43(1), 195–200 (2009)Google Scholar
  209. Phenrat, T., Cihan, A., Kim, H.J., Mital, M., Illangasekare, T., Lowry, G.V.: Transport and deposition of polymer-modified fe-0 nanoparticles in 2-D heterogeneous porous media: effects of particle concentration, Fe-0 content, and coatings. Environ. Sci. Technol. 44(23), 9086–9093 (2010)Google Scholar
  210. Philippe, A., Schaumann, G.E.: Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review. Environ. Sci. Technol. 48(16), 8946–8962 (2014)Google Scholar
  211. Phillips, R.J., Deen, W.M., Brady, J.F.: Hindered transport in fibrous membranes and gels: effect of solute size and fiber configuration. J. Colloid Interface Sci. 139(2), 363–373 (1990)Google Scholar
  212. Pignatel, F., Nicolas, M., Guazzelli, É.: A falling cloud of particles at a small but finite Reynolds number. J. Fluid Mech. 671, 34–51 (2011)Google Scholar
  213. Quinn, J., Geiger, C., Clausen, C., Brooks, K., Coon, C., O’Hara, S., Krug, T., Major, D., Yoon, W.-S., Gavaskar, A., Holdsworth, T.: Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron. Environ. Sci. Technol. 39(5), 1309–1318 (2005)Google Scholar
  214. Rabah, M.A., Farghaly, F.E., Abd-El Motaleb, M.A.: Recovery of nickel, cobalt and some salts from spent Ni-MH batteries. Waste Manag 28(7), 1159–1167 (2008)Google Scholar
  215. Rackow, E.C., Fein, I.A., Leppo, J.: Colloid osmotic pressure as a prognostic indicator of pulmonary edema and mortality in the critically ill. Chest 72(6), 709–713 (1977)Google Scholar
  216. Rafaï, S., Jibuti, L., Peyla, P.: Effective viscosity of microswimmer suspensions. Phys. Rev. Lett. 104, 098102 (2010)Google Scholar
  217. Rajagopalan, R., Tien, C.: Trajectory analysis of deep-bed filtration with sphere-in-cell porous-media model. AIChE J. 22(3), 523–533 (1976)Google Scholar
  218. Redman, J.A., Walker, S.L., Elimelech, M.: Bacterial adhesion and transport in porous media: role of the secondary energy minimum. Environ. Sci. Technol. 38(6), 1777–1785 (2004)Google Scholar
  219. Reimus, P.W., Zavarin, M., Wang, Y.: Colloid-Facilitated Radionuclide Transport: Current State of Knowledge from a Nuclear Waste Repository Risk Assessment Perspective. Los Alamos National Laboratory (LANL) (2017)Google Scholar
  220. Rhodes, M.J.: Introduction to Particle Technology. Wiley, Hoboken (2008)Google Scholar
  221. Rippy, M.A.: Meeting the criteria: linking biofilter design to fecal indicator bacteria removal. WIREs Water 2, 577–592 (2015)Google Scholar
  222. Rogers, W.B.: ART. XXXIII—On the formation of rotating rings by air and liquids. Am. J. Sci. Arts 26, 246–258 (1858)Google Scholar
  223. Rolhion, N., Chassaing, B.: When pathogenic bacteria meet the intestinal microbiota. Philos. Trans. R. Soc. B 371, 20150504 (2016)Google Scholar
  224. Rusconi, R., Guasto, J.S., Stocker, R.: Bacterial transport suppressed by fluid shear. Nature Phys. 10, 212–217 (2014)Google Scholar
  225. Ryan, J.N., Elimelech, M.: Colloid mobilization and transport in groundwater. Colloids Surf. A 107, 1–56 (1996)Google Scholar
  226. Ryan, J.N., Elimelech, M., Baeseman, J.L., Magelky, R.D.: Silica-coated titania and zirconia colloids for subsurface transport field experiments. Environ. Sci. Technol. 34(10), 2000–2005 (2000)Google Scholar
  227. Ryan, S.D., Haines, B.M., Berlyand, L., Ziebert, F., Aranson, I.S.: Viscosity of bacterial suspensions: hydrodynamic interactions and self-induced noise. Phys. Rev. E 83, 050904 (2011)Google Scholar
  228. Saintillan, D.: The dilute rheology of swimming suspensions: a simple kinetic model. Exp. Mech. 50, 1275 (2010)Google Scholar
  229. Saintillan, D.: Rheology of active fluids. Annu. Rev. Fluid Mech. 50, 563–592 (2018)Google Scholar
  230. Saintillan, D., Shelley, M.J.: Orientational order and instabilities in suspensions of selflocomoting rods. Phys. Rev. Lett. 99, 058102 (2007)Google Scholar
  231. Sakulchaicharoen, N., O’Carroll, D.M., Herrera, J.E.: Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles. J. Contam. Hydrol. 118(3–4), 117–127 (2010)Google Scholar
  232. Sartori, P., Chiarello, E., Jayaswal, G., Pierno, M., Mistura, G., Brun, P., Tiribocchi, A., Orlandini, E.: Wall accumulation of bacteria with different motility patterns. Phys. Rev. E 97, 022610 (2018)Google Scholar
  233. Schaflinger, U., Machu, G.: Interfacial phenomena in suspensions. Chemical Engineering Technology 22(7), 617–619 (1999)Google Scholar
  234. Schijven, J.F., Hassanizadeh, S.M.: Virus removal by soil passage at field scale and groundwater protection of sandy aquifers. Water Sci. Technol. 46(3), 123–129 (2002). Google Scholar
  235. Schwarz-Linek, J., Arlt, J., Jepson, A., Dawson, A., Vissers, T., Miroli, D., Pilizota, T., Martinez, V.A., Poon, W.C.K.: Escherichia coli as a model active colloid: a practical introduction. Colloids Surf. B 137, 2–16 (2016)Google Scholar
  236. Sen, T.K.: Processes in pathogenic biocolloidal contaminants transport in saturated and unsaturated porous media: a review. Water Air Soil Pollut. 216(1–4), 239–256 (2011)Google Scholar
  237. Sen, T.K., Khilar, K.C.: Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv. Coll. Interface. Sci. 119(2–3), 71–96 (2006)Google Scholar
  238. Shen, C., Huang, Y., Li, B., Jin, Y.: Predicting attachment efficiency of colloid deposition under unfavorable attachment conditions. Water Resour. Res. 46(11), W11526 (2010)Google Scholar
  239. Shin, S.M., Kim, N.H., Sohn, J.S., Yang, D.H., Kim, Y.H.: Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy 79(3), 172–181 (2005)Google Scholar
  240. Shipley, R.J., Chapman, S.J.: Multiscale modelling of fluid and drug transport in vascular tumours. Bull. Math. Biol. 72(6), 1464–1491 (2010)Google Scholar
  241. Sipos, O., Nagy, K., Di Leonardo, R., Galajda, P.: Hydrodynamic trapping of swimming bacteria by convex walls. Phys. Rev. Lett. 114, 258104 (2015)Google Scholar
  242. Sklodowska, K., Debski, P.R., Michalski, J.A., Korczyk, P.M., Dolata, M., Zajac, M., Jakiela, S.: Simultaneous measurement of viscosity and optical density of bacterial growth and death in a microdroplet. Micromachines 9, 251 (2018)Google Scholar
  243. Stevik, T.K., Aa, K., Ausland, G., Hanssen, J.F.: Removal of pathogenic bacteria in wastewater percolating through porous media: a review. Water Res. 38(6), 1355–1367 (2004)Google Scholar
  244. Streger, S.H., Vainberg, S., Dong, H., Hatzinger, P.B.: Enhancing Transport of Hydrogenophaga flava ENV735 for Bioaugmentation of Aquifers Contaminated with Methyl tert-Butyl Ether. Appl. Environ. Microbiol. 68(11), 5571 (2002)Google Scholar
  245. Stucke, B.: Zur Bildung von Wirbelringen. Z. Angew. Phys. 137, 376–379 (1954)Google Scholar
  246. Stylianopoulos, T., Poh, M.-Z., Insin, N., Bawendi, M.G., Fukumura, D., Munn, L.L., Jain, R.K.: Diffusion of particles in the extracellular matrix: the effect of repulsive electrostatic interactions. Biophys. J. 99(5), 1342–1349 (2010)Google Scholar
  247. Suarez, S.S., Pacey, A.A.: Sperm transport in the female reproductive tract. Hum Reprod Update 12(1), 23–37 (2006)Google Scholar
  248. Subramanian, G., Koch, D.L.: Evolution of clusters of sedimenting low-Reynolds-number particles with Oseen interactions. J. Fluid Mech. 603, 63–100 (2008)Google Scholar
  249. Svarovsky, L.: Hydrocyclones. In: Svarovsky, L. (ed.) Introduction to Solid-Liquid Separation, 4th edn, pp. 1–29. Butterworth-Heinemann, Oxford (2001)Google Scholar
  250. Takagi, D., Palacci, J., Braunschweig, A.B., Shelley, M.J., Zhang, J.: Hydrodynamic capture of microswimmers into sphere-bound orbits. Soft Matter 10, 1784–1789 (2014)Google Scholar
  251. Takatori, S.C., Brady, J.F.: Superfluid behavior of active suspensions from diffusive stretching. Phys. Rev. Lett. 118, 018003 (2017)Google Scholar
  252. Tamm, S.L.: Ciliary motion in paramecium. J. Cell Biol. 55, 250–255 (1972)Google Scholar
  253. Tarleton, S., Wakeman, R.: Solid/Liquid Separation: Principles of Industrial Filtration. Elsevier, Amsterdam (2005)Google Scholar
  254. Taylor, R., Cronin, A., Pedley, S., Barker, J., Atkinson, T.: The implications of groundwater velocity variations on microbial transport and wellhead protection—review of field evidence. FEMS Microbiol. Ecol. 49, 17–26 (2004)Google Scholar
  255. Thomas, D., Penicot, P., Contal, P., Leclerc, D., Vendel, J.: Clogging of fibrous filters by solid aerosol particles experimental and modelling study. Chem. Eng. Sci. 56(11), 3549–3561 (2001)Google Scholar
  256. Thomson, J.J., Newall, H.F.: On the formation of vortex rings by drops falling into liquids, and some allied phenomena. Proc. R. Soc. Lond. 39, 417–435 (1885)Google Scholar
  257. Thursby, E., Juge, N.: Introduction to the human gut microbiota. Biochem. J. 474, 1823–1836 (2017)Google Scholar
  258. Tomlinson, C.: LXV. On a new variety of the cohesion-figures of liquids. Lond. Edinb. Dublin Philos. Mag. J. Sci. 27(184), 425–432 (1864)Google Scholar
  259. Tong, M., Johnson, W.P.: Excess colloid retention in porous media as a function of colloid size, fluid velocity, and grain angularity. Environ. Sci. Technol. 40(24), 7725–7731 (2006)Google Scholar
  260. Tong, M., Li, X., Brow, C.N., Johnson, W.P.: Detachment-influenced transport of an adhesion-deficient bacterial strain within water-reactive porous media. Environ. Sci. Technol. 39(8), 2500–2508 (2005)Google Scholar
  261. Tong, M., Ma, H., Johnson, W.P.: Funneling of flow into grain-to-grain contacts drives colloid − colloid aggregation in the presence of an energy barrier. Environ. Sci. Technol. 42(8), 2826–2832 (2008)Google Scholar
  262. Torchilin, V.: Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev. 63(3), 131–135 (2011)Google Scholar
  263. Torkzaban, S., Bradford, S.A., Walker, S.L.: Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media. Langmuir 23(19), 9652–9660 (2007)Google Scholar
  264. Torkzaban, S., Tazehkand, S.S., Walker, S.L., Bradford, S.A.: Transport and fate of bacteria in porous media: coupled effects of chemical conditions and pore space geometry. Water Resour. Res. 44(4), W04403 (2008)Google Scholar
  265. Torkzaban, S., Bradford, S.A., Vanderzalm, J.L., Patterson, B.M., Harris, B., Prommer, H.: Colloid release and clogging in porous media: effects of solution ionic strength and flow velocity. J. Contam. Hydrol. 181, 161–171 (2015)Google Scholar
  266. Trauscht, J., Pazmino, E., Johnson, W.P.: Prediction of nanoparticle and colloid attachment on unfavorable mineral surfaces using representative discrete heterogeneity. Langmuir 31(34), 9366–9378 (2015)Google Scholar
  267. Tufenkji, N.: Modeling microbial transport in porous media: traditional approaches and recent developments. Adv. Water Resour. 30(6–7), 1455–1469 (2007)Google Scholar
  268. Tufenkji, N., Elimelech, M.: Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environ. Sci. Technol. 38(2), 529–536 (2004a)Google Scholar
  269. Tufenkji, N., Elimelech, M.: Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions. Langmuir 20(25), 10818–10828 (2004b)Google Scholar
  270. Tufenkji, N., Elimelech, M.: Spatial distributions of Cryptosporidium oocysts in porous media: evidence for dual mode deposition. Environ. Sci. Technol. 39(10), 3620–3629 (2005)Google Scholar
  271. Tufenkji, N., Miller, G.F., Ryan, J.N., Harvey, R.W., Elimelech, M.: Transport of Cryptosporidium oocysts in porous media: role of straining and physicochemical filtration. Environ. Sci. Technol. 38(22), 5932–5938 (2004)Google Scholar
  272. Vaidyanathan, R., Tien, C.H.I.: Hydrosol deposition in granular beds—an experimental study. Chem. Eng. Commun. 81(1), 123–144 (1989)Google Scholar
  273. Van der Waals, J.D.: Over de Continuiteit van den Gas-en Vloeistoftoestand, vol. 1. Sijthoff, Amsterdam (1873)Google Scholar
  274. Velimirovic, M., Tosco, T., Uyttebroek, M., Luna, M., Gastone, F., De Boer, C., Klaas, N., Sapion, H., Eisenmann, H., Larsson, P.-O., Braun, J., Sethi, R., Bastiaens, L.: Field assessment of guar gum stabilized microscale zerovalent iron particles for in situ remediation of 1,1,1-trichloroethane. J. Contam. Hydrol. 164, 88–99 (2014)Google Scholar
  275. Verma, S., Daverey, A., Sharma, A.: Slow sand filtration for water and wastewater treatment—a review. Environ. Technol. Rev. 6(1), 47–58 (2017)Google Scholar
  276. Vogel, T.M.: Bioaugmentation as a soil bioremediation approach. Curr. Opin. Biotechnol. 7(3), 311–316 (1996)Google Scholar
  277. Wadhams, G.H., Armitage, J.P.: Making sense of it all: bacterial chemotaxis. Nat. Rev. Mol. Cell Biol. 5, 1024 (2004)Google Scholar
  278. Wallender, E.K., Ailes, E.C., Yoder, J.S., Roberts, V.A., Brunkard, J.M.: Contributing factors to disease outbreaks associated with untreated groundwater. Groundwater 52(6), 886–897 (2014)Google Scholar
  279. Wang, C.-S.: Electrostatic forces in fibrous filters—a review. Powder Technol. 118(1), 166–170 (2001)Google Scholar
  280. Wang, C.-B., Zhang, W.-X.: Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 31(7), 2154–2156 (1997)Google Scholar
  281. Wang, Y., Hernandez, R.M., Bartlett, D.J., Bingham, J.M., Kline, T.R., Sen, A., Mallouk, T.E.: Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22, 10451–10456 (2006)Google Scholar
  282. Wang, D., Ge, L., He, J., Zhang, W., Jaisi, D.P., Zhou, D.: Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol. J. Contam. Hydrol. 164, 35–48 (2014)Google Scholar
  283. Wang, W., Duan, W., Ahmed, S., Sen, A., Mallouk, T.E.: From one to many: dynamic assembly and collective behavior of self-propelled colloidal motors. Acc. Chem. Res. 48(7), 1938–1946 (2015)Google Scholar
  284. Weil, M.H., Henning, R.J., Puri, V.K.: Colloid oncotic pressure: clinical significance. Crit. Care Med. 7(3), 113–116 (1979)Google Scholar
  285. Wenning, L.A., Murphy, R.M.: Coupled cellular trafficking and diffusional limitations in delivery of immunotoxins to multicell tumor spheroids. Biotechnol. Bioeng. 62(5), 562–575 (1999)Google Scholar
  286. Wheat, P.M., Marine, N.A., Moran, J.L., Posner, J.D.: Rapid fabrication of bimetallic spherical motors. Langmuir 26, 13052–13055 (2010)Google Scholar
  287. Wilhelm, C., Gazeau, F., Roger, J., Pons, J.N., Bacri, J.C.: Interaction of anionic superparamagnetic nanoparticles with cells: kinetic analyses of membrane adsorption and subsequent internalization. Langmuir 18(21), 8148–8155 (2002)Google Scholar
  288. Wilhelm, S., Tavares, A.J., Dai, Q., Ohta, S., Audet, J., Dvorak, H.F., Chan, W.C.W.: Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016)Google Scholar
  289. Yang, X., Lin, S., Wiesner, M.R.: Influence of natural organic matter on transport and retention of polymer coated silver nanoparticles in porous media. J. Hazard. Mater. 264, 161–168 (2014)Google Scholar
  290. Yao, K.-M., Habibian, M.T., O’Melia, C.R.: Water and waste water filtration. Concepts and applications. Environ. Sci. Technol. 5(11), 1105–1112 (1971)Google Scholar
  291. Yazi, S.R., Nosrati, R., Stevens, C.A., Vogel, D., Escobedo, C.: Migration of magnetotactic bacteria in porous media. Biomicrofluidics 12, 011101 (2018)Google Scholar
  292. Yeap, S.P., Ahmad, A.L., Ooi, B.S., Lim, J.: Electrosteric stabilization and its role in cooperative magnetophoresis of colloidal magnetic nanoparticles. Langmuir 28(42), 14878–14891 (2012)Google Scholar
  293. Zhang, W., Tang, X., Weisbrod, N., Guan, Z.: A review of colloid transport in fractured rocks. J. Mt. Sci. 9(6), 770–787 (2012)Google Scholar
  294. Zhao, W., Walker, S.L., Huang, Q., Cai, P.: Adhesion of bacterial pathogens to soil colloidal particles: influences of cell type, natural organic matter, and solution chemistry. Water Res. 53, 35–46 (2014)Google Scholar
  295. Zheng, J.-M., Pollack, G.H.: Long-range forces extending from polymer-gel surfaces. Phys. Rev. E 68(3), 031408 (2003)Google Scholar
  296. Zhong, H., Liu, G., Jiang, Y., Yang, J., Liu, Y., Yang, X., Liu, Z., Zeng, G.: Transport of bacteria in porous media and its enhancement by surfactants for bioaugmentation: a review. Biotechnol. Adv. 35(4), 490–504 (2017)Google Scholar
  297. Zia, R.N.: Active and passive microrheology: theory and simulation. Annu. Rev. Fluid Mech. 50, 371–405 (2018)Google Scholar
  298. Zöttl, A., Stark, H.: Emergent behavior in active colloids. J. Phys.: Condens. Matter 28, 253001 (2016)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Civil Engineering, Lassonde School of EngineeringYork UniversityTorontoCanada
  2. 2.School of EngineeringUniversity of GuelphGuelphCanada
  3. 3.Department of Physics and AstronomyPurdue UniversityWest LafayetteUSA
  4. 4.College of EngineeringUniversity of IllinoisChicagoUSA
  5. 5.Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática (IBB)CONICET-UNEROro VerdeArgentina
  6. 6.LAMAE, Facultad de IngenieríaUniv. Nac. de Entre RíosOro VerdeArgentina

Personalised recommendations