Advertisement

Transport in Porous Media

, Volume 128, Issue 1, pp 243–269 | Cite as

3D Microscale Flow Simulation of Shear-Thinning Fluids in a Rough Fracture

  • Min ZhangEmail author
  • Maša Prodanović
  • Maryam Mirabolghasemi
  • Jianlin Zhao
Article

Abstract

The shear-thinning fluid flow in rough fractures is of wide interest in subsurface engineering. Inertial effects due to flow regime, fracture aperture variations as well as fluid rheology affect the macroscopic flow parameters in an interrelated way. We present a 3D microscale flow simulation for both Newtonian and Cross power-law shear-thinning fluids through a rough fracture over a range of flow regimes, thus evaluating the critical Reynolds number above which the linear Darcy’s law is no longer applicable. The flow domain is extracted from a computed microtomography image of a fractured Berea sandstone. The fracture aperture is much more variable than any of the previous numerical or experimental work involving shear-thinning fluids, and simulations are 3D for the first time. We quantify the simulated velocity fields and propose a new correlation for shift factor (parameter relating in situ porous medium viscosity with bulk viscosity). The correlation incorporates tortuosity (parameter calculated either based only on fracture image or on detailed velocity field, if available) as well as a fluid-dependent parameter obtained from the analytical/semi-analytical solutions of the same shear-thinning fluids flow in a smooth slit. Our results show that the shift factor is dependent on both the fracture aperture distribution (not only the hydraulic/equivalent aperture) and fluid rheology properties. However, both the inertial coefficient and critical Reynolds number are functions of the fracture geometry only, which is consistent with a recent experimental study.

Keywords

Shear-thinning fluid Computational fluid dynamics Realistic rough fracture Forchheimer’s law Shift factor 

Notes

Acknowledgements

M. Z. would like to thank China Scholarship Council (CSC) for supporting her Ph.D. study at The University of Texas at Austin. M. P. has been supported by NSF EarthCube Grant 1541008. The authors also would like to thank the Texas Advanced Computing Center (TACC) for providing valuable technical support and its state-of-the-art computing resources (https://www.tacc.utexas.edu/). The fracture image used in this study is publicly available on Digital Rocks Portal (Karpyn et al. 2016); before the final version of this paper is accepted, we will post a selection of flow fields from this study in the same repository.

References

  1. Agnaou, M., Lasseux, D., Ahmadi, A.: Origin of the inertial deviation from Darcy’s law: an investigation from a microscopic flow analysis on two-dimensional model structures. Phys. Rev. E 96(4), 043105 (2017)CrossRefGoogle Scholar
  2. Balhoff, M., Sanchez-Rivera, D., Kwok, A., Mehmani, Y., Prodanović, M.: Numerical algorithms for network modeling of yield stress and other non-Newtonian fluids in porous media. Transp. Porous Media 93(3), 363–379 (2012).  https://doi.org/10.1007/s11242-012-9956-5 CrossRefGoogle Scholar
  3. Bird, RB., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics, 2nd Edition (1987)Google Scholar
  4. Bird, RB., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena, Revised 2nd Edition (2002)Google Scholar
  5. Briggs, S., Karney, B.W., Sleep, B.E.: Numerical modeling of the effects of roughness on flow and eddy formation in fractures. J. Rock Mech. Geotech. Eng. 9(1), 105–115 (2017).  https://doi.org/10.1016/j.jrmge.2016.08.004 CrossRefGoogle Scholar
  6. Brush, D.J., Thomson, N.R.: Fluid flow in synthetic rough-walled fractures: Navier–Stokes, Stokes, and local cubic law simulations. Water Resour. Res. 39(4), 1085 (2003).  https://doi.org/10.1029/2002WR001346 CrossRefGoogle Scholar
  7. Cardenas, M.B., Slottke, D.T., Ketcham, R.A., Sharp, J.M.: Effects of inertia and directionality on flow and transport in a rough asymmetric fracture. J. Geophys. Res.: Solid Earth 114(B6) (2009).  https://doi.org/10.1029/2009JB006336
  8. Chauveteau, G.: Rodlike polymer solution flow through fine pores: influence of pore size on rheological behavior. J. Rheol. 26(2), 111–142 (1982).  https://doi.org/10.1122/1.549660 CrossRefGoogle Scholar
  9. Christopher, R.H., Middleman, S.: Power-law flow through a packed tube. Ind. Eng. Chem. Fundam. 4(4), 422–426 (1965).  https://doi.org/10.1021/i160016a011 CrossRefGoogle Scholar
  10. Ciriello, V., Longo, S., Chiapponi, L., Di Federico, V.: Porous gravity currents: a survey to determine the joint influence of fluid rheology and variations of medium properties. Adv. Water Resour. 92, 105–115 (2016).  https://doi.org/10.1016/j.advwatres.2016.03.021 CrossRefGoogle Scholar
  11. Comba, S., Dalmazzo, D., Santagata, E., Sethi, R.: Rheological characterization of xanthan suspensions of nanoscale iron for injection in porous media. J. Hazard. Mater. 185(2), 598–605 (2011).  https://doi.org/10.1016/j.jhazmat.2010.09.060 CrossRefGoogle Scholar
  12. Crandall, D., Bromhal, G., Karpyn, Z.T.: Numerical simulations examining the relationship between wall-roughness and fluid flow in rock fractures. Int. J. Rock Mech. Min. Sci. 47(5), 784–796 (2010)CrossRefGoogle Scholar
  13. Dharmawan, I.A., Ulhag, R.Z., Endyana, C., Aufaristama, M.: Numerical simulation of non-Newtonian fluid flows through fracture network. In: IOP conference series: earth and environmental science 29, 012–030 (2016).  https://doi.org/10.1088/1755-1315/29/1/012030
  14. Di Federico, V.: Non-Newtonian flow in a variable aperture fracture. Transp. Porous Media 30(1), 75–86 (1998).  https://doi.org/10.1023/A:1006512822518 CrossRefGoogle Scholar
  15. Di Federico, V.: On non-Newtonian fluid flow in rough fractures. Water Resour. Res. 37(9), 2425–2430 (2001).  https://doi.org/10.1029/2001WR000359 CrossRefGoogle Scholar
  16. Di Federico, V., Longo, S., King, S.E., Chiapponi, L., Petrolo, D., Ciriello, V.: Gravity-driven flow of Herschel–Bulkley fluid in a fracture and in a 2d porous medium. J. Fluid Mech. 821, 59–84 (2017).  https://doi.org/10.1017/jfm.2017.234 CrossRefGoogle Scholar
  17. Duda, A., Koza, Z., Matyka, M.: Hydraulic tortuosity in arbitrary porous media flow. Phys. Rev. E 84(3), 036–319 (2011).  https://doi.org/10.1103/PhysRevE.84.036319 CrossRefGoogle Scholar
  18. Felisa, G., Ciriello, V., Longo, S., Di Federico, V.: A simplified model to evaluate the effect of fluid rheology on non-Newtonian flow in variable aperture fractures. In: 19th EGU General Assembly, EGU2017, Proceedings from the Conference Held 23–28 April, 2017 in Vienna, Austria, vol. 19 (2017)Google Scholar
  19. Feng, Y., Gray, K.E.: Modeling lost circulation through drilling-induced fractures. SPE J. (2017a).  https://doi.org/10.2118/187945-PA Google Scholar
  20. Feng, Y., Gray, K.E.: Review of fundamental studies on lost circulation and wellbore strengthening. J. Pet. Sci. Eng. 152, 511–522 (2017b).  https://doi.org/10.1016/j.petrol.2017.01.052 CrossRefGoogle Scholar
  21. Feng, Y., Jones, J.F., Gray, K.E.: A review on fracture-initiation and -propagation pressures for lost circulation and wellbore strengthening. SPE Drill. Complet. 31(02), 134–144 (2016).  https://doi.org/10.2118/181747-PA CrossRefGoogle Scholar
  22. Forchheimer, P.: Wasserbewegung durch boden. Zeitschrift des Vereins deutscher Ingenieure 45(50), 1782–1788 (1901)Google Scholar
  23. Ge, S.: A governing equation for fluid flow in rough fractures. Water Resour. Res. 33(1), 53–61 (1997).  https://doi.org/10.1029/96WR02588 CrossRefGoogle Scholar
  24. Ghanbarian, B., Hunt, A.G., Ewing, R.P., Sahimi, M.: Tortuosity in porous media: a critical review. Soil Sci. Soc. Am. J. 77(5), 1461–1477 (2013).  https://doi.org/10.2136/sssaj2012.0435 CrossRefGoogle Scholar
  25. Hawkes, C.D., McLellan, P.J., Zimmer, U., Bachu, S.: Geomechanical factors affecting geological storage of CO\(_{2}\) in depleted oil and gas reservoirs. In: Canadian International Petroleum Conference, Petroleum Society of Canada (2004)Google Scholar
  26. Hayes, R.E., Afacan, A., Boulanger, B., Shenoy, A.V.: Modelling the flow of power law fluids in a packed bed using a volume-averaged equation of motion. Transp. Porous Media 23(2), 175–196 (1996).  https://doi.org/10.1007/BF00178125 CrossRefGoogle Scholar
  27. Hirasaki, G.J., Pope, G.A.: Analysis of factors influencing mobility and adsorption in the flow of polymer solution through porous media. Soc. Pet. Eng. J. 14(4), 337–346 (1974)CrossRefGoogle Scholar
  28. Huang, H., Babadagli, T., Li, HA.: A quantitative and visual experimental study: effect of fracture roughness on proppant transport in a vertical fracture. In: SPE Eastern Regional Meeting, Society of Petroleum Engineers (2017)Google Scholar
  29. Huang, X., Yuan, P., Zhang, H., Han, J., Mezzatesta, A., Bao, J.: Numerical study of wall roughness effect on proppant transport in complex fracture geometry. In: SPE Middle East Oil and Gas Show and Conference, Society of Petroleum Engineers (2017)Google Scholar
  30. Huo, D., Gong, B.: Discrete modeling and simulation on potential leakage through fractures in CO\(_{2}\) sequestration. In: Society of Petroleum Engineers, SPE Annual Technical Conference and Exhibition, 19–22 Sept, Florence, Italy,  https://doi.org/10.2118/135507-MS (2010)
  31. James, D.F., McLaren, D.R.: The laminar flow of dilute polymer solutions through porous media. J. Fluid Mech. 70(4), 733–752 (1975).  https://doi.org/10.1017/S0022112075002327 CrossRefGoogle Scholar
  32. Karpyn, Z., Landry, C., Prodanović, M.: Induced rough fracture in Berea sandstone core. Retrieved from www.digitalrocksportal.org (2016)
  33. Konzuk, J.S., Kueper, B.H.: Evaluation of cubic law based models describing single-phase flow through a rough-walled fracture. Water Resour. Res. 40(2), W02402 (2004).  https://doi.org/10.1029/2003WR002356 CrossRefGoogle Scholar
  34. Kovscek, A.R., Tretheway, D.C., Persoff, P., Radke, C.J.: Foam flow through a transparent rough-walled rock fracture. J. Pet. Sci. Eng. 13(2), 75–86 (1995).  https://doi.org/10.1016/0920-4105(95)00005-3 CrossRefGoogle Scholar
  35. Lavrov, A.: Non-Newtonian fluid flow in rough-walled fractures: a brief review. In: International Society for Rock Mechanics and Rock Engineering, ISRM SINOROCK 2013, 18–20 June, Shanghai, China (2013)Google Scholar
  36. Lavrov, A.: Numerical modeling of steady-state flow of a non-Newtonian power-law fluid in a rough-walled fracture. Comput. Geotech. 50, 101–109 (2013b).  https://doi.org/10.1016/j.compgeo.2013.01.004 CrossRefGoogle Scholar
  37. Lavrov, A.: Redirection and channelization of power-law fluid flow in a rough-walled fracture. Chem. Eng. Sci. 99, 81–88 (2013c).  https://doi.org/10.1016/j.ces.2013.05.045 CrossRefGoogle Scholar
  38. Lavrov, A.: Radial flow of non-newtonian power-law fluid in a rough-walled fracture: effect of fluid rheology. Transp. Porous Media 105(3), 559–570 (2014).  https://doi.org/10.1007/s11242-014-0384-6 CrossRefGoogle Scholar
  39. Lavrov, A.: Flow of truncated power-law fluid between parallel walls for hydraulic fracturing applications. J. Non-Newtonian Fluid Mech. 223, 141–146 (2015).  https://doi.org/10.1016/j.jnnfm.2015.06.005 CrossRefGoogle Scholar
  40. Liu, Y., Sharma, M.M.: Effect of fracture width and fluid rheology on proppant settling and retardation: an experimental study. In: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers (2005)Google Scholar
  41. Liu, Y.: Settling and hydrodynamic retardation of proppants in hydraulic fractures. Ph.D. dissertation, University of Texas at Austin (2006)Google Scholar
  42. Liu, S., Masliyah, J.H.: Non-linear flows in porous media. J. Non-Newtonian Fluid Mech. 86(1), 229–252 (1999).  https://doi.org/10.1016/S0377-0257(98)00210-9 CrossRefGoogle Scholar
  43. Lopez, X., Valvatne, P.H., Blunt, M.J.: Predictive network modeling of single-phase non-Newtonian flow in porous media. J. Colloid Interface Sci. 264(1), 256–265 (2003).  https://doi.org/10.1016/S0021-9797(03)00310-2 CrossRefGoogle Scholar
  44. Macosko, C.W.: Rheology: Principles, Measurements, and Applications. Wiley, London (1994)Google Scholar
  45. Mirabolghasemi, M.: Micro-scale modeling of formation damage. Ph.D. dissertation, University of Texas at Austin (2017)Google Scholar
  46. Noiriel, C., Gouze, P., Madé, B.: Time-resolved 3D characterisation of flow and dissolution patterns in a single rough-walled fracture. In: Krásný, J., Sharp, JM (eds) Groundwater in fractured rocks, IAH Selected Paper Series, vol 9 (Selected Papers on Hydrogeology), Taylor & Francis, London pp 629–642 (2007)Google Scholar
  47. Noiriel, C., Gouze, P., Madé, B.: 3D analysis of geometry and flow changes in a limestone fracture during dissolution. J. Hydrol. 486, 211–223 (2013).  https://doi.org/10.1016/j.jhydrol.2013.01.035 CrossRefGoogle Scholar
  48. Osiptsov, A.A.: Fluid mechanics of hydraulic fracturing: a review. J. Pet. Sci. Eng. 156, 513–535 (2017).  https://doi.org/10.1016/j.petrol.2017.05.019 CrossRefGoogle Scholar
  49. Pearson, J.R.A., Tardy, P.M.J.: Models for flow of non-Newtonian and complex fluids through porous media. J. Non-Newtonian Fluid Mech. 102(2), 447–473 (2002).  https://doi.org/10.1016/S0377-0257(01)00191-4 CrossRefGoogle Scholar
  50. Perrin, C.L., Tardy, P.M.J., Sorbie, K.S., Crawshaw, J.C.: Experimental and modeling study of Newtonian and non-Newtonian fluid flow in pore network micromodels. J. Colloid Interface Sci. 295(2), 542–550 (2006).  https://doi.org/10.1016/j.jcis.2005.09.012 CrossRefGoogle Scholar
  51. Pipe, C.J., Majmudar, T.S., McKinley, G.H.: High shear rate viscometry. Rheol. Acta 47(5–6), 621–642 (2008).  https://doi.org/10.1007/s00397-008-0268-1 CrossRefGoogle Scholar
  52. Raimbay, A., Babadagli, T., Kuru, E., Develi, K.: Quantitative and visual analysis of proppant transport in rough fractures. J. Nat. Gas Sci. Eng. 33, 1291–1307 (2016).  https://doi.org/10.1016/j.jngse.2016.06.040 CrossRefGoogle Scholar
  53. Renshaw, C.E.: On the relationship between mechanical and hydraulic apertures in rough-walled fractures. J. Geophys. Res.: Solid Earth 100(B12), 24629–24636 (1995).  https://doi.org/10.1029/95JB02159 CrossRefGoogle Scholar
  54. Rodríguez de Castro, A., Radilla, G.: Non-Darcian flow experiments of shear-thinning fluids through rough-walled rock fractures. Water Resour. Res. 52(11), 9020–9035 (2016).  https://doi.org/10.1002/2016WR019406 CrossRefGoogle Scholar
  55. Rodríguez de Castro, A., Radilla, G.: Flow of yield stress and Carreau fluids through rough-walled rock fractures: prediction and experiments. Water Resour. Res. 53(7), 6197–6217 (2017a).  https://doi.org/10.1002/2017WR020520 CrossRefGoogle Scholar
  56. Rodríguez de Castro, A., Radilla, G.: Non-Darcian flow of shear-thinning fluids through packed beads: experiments and predictions using Forchheimer’s law and Ergun’s equation. Adv. Water Resour. 100, 35–47 (2017b).  https://doi.org/10.1016/j.advwatres.2016.12.009 CrossRefGoogle Scholar
  57. Roustaei, A., Chevalier, T., Talon, L., Frigaard, I.A.: Non-Darcy effects in fracture flows of a yield stress fluid. J. Fluid Mech. 805, 222–261 (2016).  https://doi.org/10.1017/jfm.2016.491 CrossRefGoogle Scholar
  58. Seright, R.S.: Polymer gel dehydration during extrusion through fractures. SPE Prod. Facil. 14(02), 110–116 (1999).  https://doi.org/10.2118/56126-PA CrossRefGoogle Scholar
  59. Seright, R.S.: Gel propagation through fractures. SPE Prod. Facil. 16(04), 225–231 (2001).  https://doi.org/10.2118/74602-PA CrossRefGoogle Scholar
  60. Seright, R.S.: An alternative view of filter-cake formation in fractures inspired by Cr(III)-acetate-HPAM gel extrusion. SPE Prod. Facil. 18(01), 65–72 (2003).  https://doi.org/10.2118/81829-PA CrossRefGoogle Scholar
  61. Shukla, R., Ranjith, P., Haque, A., Choi, X.: A review of studies on CO\(_{2}\) sequestration and caprock integrity. Fuel 89(10), 2651–2664 (2010).  https://doi.org/10.1016/j.fuel.2010.05.012 CrossRefGoogle Scholar
  62. Sivanesapillai, R., Steeb, H., Hartmaier, A.: Transition of effective hydraulic properties from low to high Reynolds number flow in porous media. Geophys. Res. Lett. 41(14), 4920–4928 (2014).  https://doi.org/10.1002/2014GL060232 CrossRefGoogle Scholar
  63. Sochi, T.: Non-Newtonian flow in porous media. Polymer 51(22), 5007–5023 (2010).  https://doi.org/10.1016/j.polymer.2010.07.047 CrossRefGoogle Scholar
  64. Sochi, T.: Analytical solutions for the flow of Carreau and Cross fluids in circular pipes and thin slits. Rheol. Acta 54(8), 745–756 (2015).  https://doi.org/10.1007/s00397-015-0863-x CrossRefGoogle Scholar
  65. Sorbie, K.S., Clifford, P.J., Jones, E.R.W.: The rheology of pseudoplastic fluids in porous media using network modeling. J. Colloid Interface Sci. 130(2), 508–534 (1989).  https://doi.org/10.1016/0021-9797(89)90128-8 CrossRefGoogle Scholar
  66. Talon, L., Auradou, H., Hansen, A.: Effective rheology of Bingham fluids in a rough channel. Front. Phys. 2(24).  https://doi.org/10.3389/fphy.2014.00024 (2014)
  67. Tokan-Lawal, A.O.: Understanding fluid flow in rough-walled fractures using X-ray microtomography images. Master thesis, University of Texas at Austin (2015)Google Scholar
  68. Tokan-Lawal, A., Prodanović, M., Eichhubl, P.: Investigating flow properties of partially cemented fractures in Travis Peak Formation using image-based pore-scale modeling. J. Geophys. Res.: Solid Earth 120(8), 5453–5466 (2015).  https://doi.org/10.1002/2015JB012045 CrossRefGoogle Scholar
  69. Tosco, T., Marchisio, D.L., Lince, F., Sethi, R.: Extension of the Darcy–Forchheimer law for shear-thinning fluids and validation via pore-scale flow simulations. Transp. Porous Media 96(1), 1–20 (2013).  https://doi.org/10.1007/s11242-012-0070-5 CrossRefGoogle Scholar
  70. Wang, L., Cardenas, M.B., Slottke, D.T., Ketcham, R.A., Sharp, J.M.: Modification of the local cubic law of fracture flow for weak inertia, tortuosity, and roughness. Water Resour. Res. 51(4), 2064–2080 (2015).  https://doi.org/10.1002/2014WR015815 CrossRefGoogle Scholar
  71. Wang, Y., Seright, R., Huang, B., Fu, C., Zeng, Y.: Describing flow behavior of polymer gel in fracture using rheology. J. Pet. Sci. Eng. 157, 1209–1219 (2017).  https://doi.org/10.1016/j.petrol.2017.08.019 CrossRefGoogle Scholar
  72. Xiao, W., Xia, C., Wei, W., Bian, Y.: Combined effect of tortuosity and surface roughness on estimation of flow rate through a single rough joint. J. Geophys. Eng. 10(4), 045015 (2013).  https://doi.org/10.1088/1742-2132/10/4/045015 CrossRefGoogle Scholar
  73. Yan, Y., Koplik, J.: Flow of power-law fluids in self-affine fracture channels. Phys. Rev. E 77(3), 036–315 (2008).  https://doi.org/10.1103/PhysRevE.77.036315 CrossRefGoogle Scholar
  74. Zhao, J., Kang, Q., Yao, J., Viswanathan, H., Pawar, R., Zhang, L., Sun, H.: The effect of wettability heterogeneity on relative permeability of two-phase flow in porous media: a lattice Boltzmann study. Water Resour. Res. 54(2), 1295–1311 (2018)CrossRefGoogle Scholar
  75. Zhou, J.Q., Hu, S.H., Fang, S., Chen, Y.F., Zhou, C.B.: Nonlinear flow behavior at low Reynolds numbers through rough-walled fractures subjected to normal compressive loading. Int. J. Rock Mech. Min. Sci. 80, 202–218 (2015).  https://doi.org/10.1016/j.ijrmms.2015.09.027 CrossRefGoogle Scholar
  76. Zimmerman, R.W., Bodvarsson, G.S.: Hydraulic conductivity of rock fractures. Transp. Porous Media 23(1), 1–30 (1996).  https://doi.org/10.1007/BF00145263 CrossRefGoogle Scholar
  77. Zimmerman, R.W., Kumar, S., Bodvarsson, G.S.: Lubrication theory analysis of the permeability of rough-walled fractures. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 28(4), 325–331 (1991).  https://doi.org/10.1016/0148-9062(91)90597-F CrossRefGoogle Scholar
  78. Zou, L., Jing, L., Cvetkovic, V.: Roughness decomposition and nonlinear fluid flow in a single rock fracture. Int. J. Rock Mech. Min. Sci. 75, 102–118 (2015).  https://doi.org/10.1016/j.ijrmms.2015.01.016 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Hildebrand Department of Petroleum and Geosystems EngineeringThe University of Texas at AustinAustinUSA
  2. 2.Dave C. Swalm School of Chemical EngineeringMississippi State UniversityStarkvilleUSA
  3. 3.Chair of Building Physics, Department of Mechanical and Process EngineeringETH Zurich (Swiss Federal Institute of Technology in Zurich)ZurichSwitzerland

Personalised recommendations