Advertisement

Transport in Porous Media

, Volume 128, Issue 1, pp 123–151 | Cite as

Pore-Scale Level Set Simulations of Capillary-Controlled Displacement with Adaptive Mesh Refinement

  • Helmer André Friis
  • Janne Pedersen
  • Espen Jettestuen
  • Johan Olav HellandEmail author
  • Maša Prodanović
Article

Abstract

Multiphase flow simulations on imaged porous rock structures require numerical methods that are accurate and robust when applied on complex geometries. A key element in this context is to investigate how simulations behave under grid refinement. In this work, we couple an existing software for structured adaptive mesh refinement (AMR) and parallelism to a previously developed level set method for capillary-controlled displacement on the pore scale. The level set method accounts for wettability by using different evolution velocities in pore and solid space rather than implementing it as a boundary condition on the pore walls. We perform simulations with up to three nested refinement levels on idealized pore geometries to validate the AMR technology. Based on simulations, we identify suitable cell refinement criteria for our applications. We demonstrate effects of AMR in simulations relevant for drainage in porous media, such as in the computation of capillary entry pressures in pore throats with different shapes and wetting states, and obtain excellent agreement with analytic results. Finally, we investigate the effects of AMR during simulation of quasi-static drainage on sandstone. The comparison of capillary equilibrium fluid configurations, capillary pressure, and specific fluid/fluid interfacial area–saturation relationships for drainage with and without AMR shows differences that diminish for less water-wet states. The general behavior is that the capillary pressure and interfacial area for a given saturation increase in simulations with AMR. The largest deviation occurs for small water saturations, suggesting AMR can be an important component in simulation tools to describe more accurately capillary behavior in the low water saturation regime where interface curvature is high.

Keywords

Adaptive mesh refinement Level set method Capillary pressure Wettability Rock image 

Notes

Acknowledgements

Financial support was provided by the Research Council of Norway under Petromaks2 project 234131/E30 “Three-phase capillary pressure, hysteresis, and trapping in mixed-wet rock” and ConocoPhillips through the research center COREC. Maša Prodanović acknowledges support from NSF EAR CAREER Grant 1255622. The computations (Sects. 46) were performed on resources provided by UNINETT Sigma2—the National Infrastructure for High Performance Computing and Data Storage in Norway. We acknowledge PRACE for awarding us access to MareNostrum 4 at Barcelona Supercomputing Center (BSC), Spain, which made it possible to explore scaling behavior of our code with a large number of CPUs (Appendix A). Rahul Verma (UT Austin) provided the sphere pack pore geometry files used in Sect. 5.1.

References

  1. Adams, M., Colella, P., Graves, D.T., Johnson, J.N., Johansen, H.S., Keen, N.D., Ligocki, T.J., Martin, D.F., McCorquodale, P.W., Modiano, D., Schwartz, P.O., Sternberg, T.D., Van Straalen, B.: Chombo software package for AMR applications—design document. Technical Report LBNL-6616E, Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA (2015)Google Scholar
  2. Ahrenholz, B., Tölke, J., Lehmann, P., Peters, A., Kaestner, A., Krafczyk, M., Durner, W.: Prediction of capillary hysteresis in a porous material using lattice-boltzmann methods and comparison to experimental data and a morphological pore network model. Adv. Water Resour. 31, 1151–1173 (2008)CrossRefGoogle Scholar
  3. Alpak, F., Samardžić, A., Frank, F.: A distributed parallel direct simulator for pore-scale two-phase flow on digital rock images using a finite difference implementation of the phase-field method. J. Pet. Sci. Eng. 166, 806–824 (2018).  https://doi.org/10.1016/j.petrol.2017.11.022 CrossRefGoogle Scholar
  4. AlRatrout, A., Raeini, A.Q., Bijeljic, B., Blunt, M.J.: Automatic measurement of contact angle in pore-space images. Adv. Water Resour. 109, 158–169 (2017).  https://doi.org/10.1016/j.advwatres.2017.07.018 CrossRefGoogle Scholar
  5. Anderson, R.W., Arrighi, W.J., Elliott, N.S., Gunney, B.T., Hornung, R.D.: SAMRAI concepts and software design. Technical Report LLNL-SM-617092-DRAFT, Center for Applied Scientific Computing (CASC), Lawrence Livermore National Laboratory, Livermore, CA (2013)Google Scholar
  6. Andrew, M., Menke, H., Blunt, M.J., Bijeljic, B.: The imaging of dynamic multiphase fluid flow using synchrotron-based X-ray microtomography at reservoir conditions. Transp. Porous Med. 110, 1–24 (2015).  https://doi.org/10.1007/s11242-015-0553-2 CrossRefGoogle Scholar
  7. Armstrong, R.T., Porter, M.L., Wildenschild, D.: Linking pore-scale interfacial curvature to column-scale capillary pressure. Adv. Water Resour. 46, 55–62 (2012).  https://doi.org/10.1016/j.advwatres.2012.05.009 CrossRefGoogle Scholar
  8. Baden, S.B., Chrisochides, N.P., Gannon, D.B., Norman, M.L.: Structured Adaptive Mesh Refinement (SAMR) Grid Methods. Springer, New York, NY (1999)Google Scholar
  9. Bandara, U.C., Tartakovsky, A.M., Oostrom, M., Palmer, B.J., Grate, J., Zhang, C.: Smoothed particle hydrodynamics pore-scale simulations of unstable immiscible flow in porous media. Adv. Water Resour. 62, 356–369 (2013).  https://doi.org/10.1016/j.advwatres.2013.09.014 CrossRefGoogle Scholar
  10. Bear, J., Bachmat, Y.: Mass transport of multiple fluid phases under isothermal conditions. In: Introduction to Modeling of Transport Phenomena in Porous Media. Theory and Applications of Transport in Porous Media, vol. 4, pp. 327–398. Springer, Dordrecht (1990)  https://doi.org/10.1007/978-94-009-1926-6_5
  11. Berg, S., Ott, H., Klapp, S.A., Schwing, A., Neiteler, R., Brussee, N., Makurat, A., Leu, L., Enzmann, F., Schwartz, J.O., Kersten, M., Irvine, S., Stampanoni, M.: Real-time 3D imaging of Haines jumps in porous media flow. Proc. Natl. Acad. Sci. USA 110, 3755–3759 (2013).  https://doi.org/10.1073/pnas.1221373110 CrossRefGoogle Scholar
  12. Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1989)CrossRefGoogle Scholar
  13. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 482–512 (1984)CrossRefGoogle Scholar
  14. Berger, M.J., Rigoutsos, I.: An algorithm for point clustering and grid generation. IEEE Trans. Syst. Man Cybern. 21(5), 1278–1286 (1991)CrossRefGoogle Scholar
  15. Boek, E.S., Zacharoudiou, I., Gray, F., Shah, S.M., Crawshaw, J.P., Yang, J.: Multiphase-flow and reactive-transport validation studies at the pore scale by use of lattice Boltzmann computer simulations. SPE J. 22, 940–949 (2017).  https://doi.org/10.2118/170941-PA CrossRefGoogle Scholar
  16. Bultreys, T., Lin, Q., Raeini, A.Q., AlRatrout, A., Bijeljic, B., Blunt, M.J.: Validation of model predictions of pore-scale fluid distributions during two-phase flow. Phys. Rev. E 97, 053104 (2018).  https://doi.org/10.1103/PhysRevE.97.053104 CrossRefGoogle Scholar
  17. Burstedde, C., Wilcox, L.C., Ghattas, O.: p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. 33(3), 1103–1133 (2011).  https://doi.org/10.1137/100791634 CrossRefGoogle Scholar
  18. Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S. Pugmire, D., Biagas, K., Miller, M., Harrison, C., Weber, G.H., Krishnan, H., Fogal, T., Sanderson, A., Garth, C., Bethel, E., Camp, D., Rübel, O., Durant, M., Favre, J., Navrátil, V.: VisIt: An end-user tool for visualizing and analyzing very large data. In: High Performance Visualization—Enabling Extreme-Scale Scientific Insight, pp. 357–372 (2012)Google Scholar
  19. Gunney, B.T.N., Wissink, A.M., Hysom, D.A.: Parallel clustering algorithms for structured amr. J. Parallel Distrib. Comput. 66(11), 1419–1430 (2006)CrossRefGoogle Scholar
  20. Hassanizadeh, S.M., Gray, W.G.: Thermodynamic basis of capillary pressure in porous media. Water Resour. Res. 29, 3389–3405 (1993)CrossRefGoogle Scholar
  21. Helland, J.O., Friis, H.A., Jettestuen, E., Skjæveland, S.M.: Footprints of spontaneous fluid redistribution on capillary pressure in porous rock. Geophys. Res. Lett. 44, 4933–4943 (2017).  https://doi.org/10.1002/2017GL073442 CrossRefGoogle Scholar
  22. Helland, J.O., Jettestuen, E.: Mechanisms for trapping and mobilization of residual fluids during capillary-dominated three-phase flow in porous rock. Water Resour. Res. 52, 5376–5392 (2016).  https://doi.org/10.1002/2016WR018912 CrossRefGoogle Scholar
  23. Hilfer, R., Øren, P.E.: Dimensional analysis of pore scale and field scale immiscible displacement. Transp. Porous Med. 22, 53–72 (1996).  https://doi.org/10.1007/BF00974311 CrossRefGoogle Scholar
  24. Hilpert, M., Miller, C.T.: Pore-morphology-based simulation of drainage in totally wetting porous media. Adv. Water Resour. 24, 243–255 (2001)CrossRefGoogle Scholar
  25. Hornung, R.D., Kohn, S.R.: Managing application complexity in the SAMRAI object-oriented framework. Concurr. Comput. Pract. Exp. 14, 347–368. http://www.llnl.gov/CASC/SAMRAI] (2002)
  26. Hornung, R.D., Wissink, A.M., Kohn, S.R.: Managing complex data and geometry in parallel structured AMR applications. Eng. Comput. 22, 181–195 (2006)CrossRefGoogle Scholar
  27. Iglauer, S., Fernø, M.A., Shearing, P., Blunt, M.J.: Comparison of residual oil cluster size distribution, morphology and saturation in oil-wet and water-wet sandstone. J. Colloid Interface Sci. 375, 187–192 (2012).  https://doi.org/10.1016/j.jcis.2012.02.025 CrossRefGoogle Scholar
  28. Jettestuen, E., Helland, J.O., Prodanović, M.: A level set method for simulating capillary-controlled displacements at the pore scale with nonzero contact angles. Water Resour. Res. 49, 4645–4661 (2013).  https://doi.org/10.1002/wrcr.20334 CrossRefGoogle Scholar
  29. Lago, M., Araujo, M.: Threshold pressure in capillaries with polygonal cross section. J. Colloid Interface Sci. 243, 219–226 (2001)CrossRefGoogle Scholar
  30. Lin, Q., Bijeljic, B., Rieke, H., Blunt, M.J.: Visualization and quantification of capillary drainage in the pore space of laminated sandstone by a porous plate method using differential imaging X-ray microtomography. Water Resour. Res. 53, 7457–7468 (2017).  https://doi.org/10.1002/2017WR021083 CrossRefGoogle Scholar
  31. Liu, Z., Herring, A., Arns, C., Berg, S., Armstrong, R.T.: Pore-scale characterization of two-phase flow using integral geometry. Transp. Porous Med. 118, 99–117 (2017).  https://doi.org/10.1007/s11242-017-0849-5 CrossRefGoogle Scholar
  32. Losasso, F., Fedkiw, R., Osher, S.: Spatially adaptive techniques for level set methods and incompressible flow. Comput. Fluids 35, 995–1010 (2006)CrossRefGoogle Scholar
  33. Ma, S., Mason, G., Morrow, N.R.: Effect of contact angle on drainage and imbibition in regular polygonal tubes. Colloids Surf. A Phys. Eng. Asp. 117, 273–291 (1996)CrossRefGoogle Scholar
  34. Mason, G., Morrow, N.R.: Effect of contact angle on capillary displacement curvatures in pore throats formed by spheres. J. Colloid Interface Sci. 168, 130–141 (1994)CrossRefGoogle Scholar
  35. Mayer, R.P., Stowe, R.A.: Mercury porosimetry—breakthrough pressure for penetration between packed spheres. J. Colloid Sci. 20, 893–911 (1965)CrossRefGoogle Scholar
  36. Nair, N., Koelman, J.V.: An ising-based simulator for capillary action in porous media. Transp. Porous Med. 124, 413–437 (2018).  https://doi.org/10.1007/s11242-018-1075-5 CrossRefGoogle Scholar
  37. Nourgaliev, R.R., Theofanous, T.G.: High-fidelity interface tracking in compressible flows: unlimited anchored adaptive level set. J. Comput. Phys. 224(2), 836–866 (2007)CrossRefGoogle Scholar
  38. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2003)CrossRefGoogle Scholar
  39. Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-based fast local level set method. J. Comput. Phys. 155, 410–438 (1999)CrossRefGoogle Scholar
  40. Porter, M.L., Wildenschild, D., Grant, G., Gerhard, J.I.: Measurements and prediction of the relationship between capillary pressure, saturation, and interfacial area in a NAPL-water-glass bead system. Water Resour. Res. 46, W08512 (2010).  https://doi.org/10.1029/2009WR007786 CrossRefGoogle Scholar
  41. Princen, H.M.: Capillary phenomena in assemblies of parallel cylinders. I. Capillary rise between two cylinders. J. Colloid Interface Sci 30(1), 69–75 (1969a)CrossRefGoogle Scholar
  42. Princen, H.M.: Capillary phenomena in assemblies of parallel cylinders. II. Capillary rise in systems with more than two cylinders. J. Colloid Interface Sci. 30(3), 359–371 (1969b)CrossRefGoogle Scholar
  43. Princen, H.M.: Capillary phenomena in assemblies of parallel cylinders. III. Liquid columns between horizontal parallell cylinders. J. Colloid Interface Sci. 34(2), 171–184 (1970)CrossRefGoogle Scholar
  44. Prodanović, M., Bryant, S.L.: A level set method for determining critical curvatures for drainage and imbibition. J. Colloid Interface Sci. 304, 442–458 (2006)CrossRefGoogle Scholar
  45. Prodanović, M., Bryant, S.L., Davis, J.S.: Numerical simulation of diagenetic alteration and its effect on residual gas in tight gas sandstones. Transp. Porous Med. 96, 39–62 (2013).  https://doi.org/10.1007/s11242-012-0072-3 CrossRefGoogle Scholar
  46. Raeini, A.Q., Bijeljic, B., Blunt, M.J.: Modelling capillary trapping using finite-volume simulation of two-phase flow directly on micro-CT images. Adv. Water Resour. 83, 102–110 (2015).  https://doi.org/10.1016/j.advwatres.2015.05.008 CrossRefGoogle Scholar
  47. Ramstad, T., Øren, P., Bakke, S.: Simulation of two-phase flow in reservoir rocks using a lattice Boltzmann method. SPE J. 15, 917–927 (2010).  https://doi.org/10.2118/124617-PA CrossRefGoogle Scholar
  48. Schlüter, S., Berg, S., Rücker, M., Vogel, R.T.A.H.J., Hilfer, R., Wildenschild, D.: Pore-scale displacement mechanisms as a source of hysteresis for two-phase flow in porous media. Water Resour. Res. 52, 2194–2205 (2016).  https://doi.org/10.1002/2015WR018254 CrossRefGoogle Scholar
  49. Sheppard, A., Schroeder-Turk, G.: Network Generation Comparison Forum [Data set]. Digital Rocks Portal (2015).  https://doi.org/10.17612/P7059V
  50. Shikhov, I., Arns, C.H.: Evaluation of capillary pressure methods via digital rock simulations. Transp. Porous Med. 107, 623–640 (2015).  https://doi.org/10.1007/s11242-015-0459-z CrossRefGoogle Scholar
  51. Shikhov, I., d’Eurydice, M.N., Arns, J.-Y., Arns, C.H.: An experimental and numerical study of relative permeability estimates using spatially resolved \(t_1\)-\(z\) NMR. Transp. Porous Med. 118, 225–250 (2017).  https://doi.org/10.1007/s11242-017-0855-7 CrossRefGoogle Scholar
  52. Singh, K., Menke, H., Andrew, M., Lin, Q., Rau, C., Blunt, M.J., Bijeljic, B.: Dynamics of snap-off and pore-filling events during two-phase fluid flow in permeable media. Sci. Rep. 7, 5192 (2017).  https://doi.org/10.1038/s41598-017-05204-4 CrossRefGoogle Scholar
  53. Strain, J.: Tree methods for moving interfaces. J. Comput. Phys. 151, 616–648 (1999)CrossRefGoogle Scholar
  54. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146–159 (1994)CrossRefGoogle Scholar
  55. Verma, R., Icardi, M., Prodanović, M.: Effect of wettability on two-phase quasi-static displacement: validation of two pore scale modeling approaches. J. Contam. Hydrol. 212, 115–133 (2018).  https://doi.org/10.1016/j.jconhyd.2018.01.002 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.NORCE Norwegian Research CentreStavangerNorway
  2. 2.NORCE Norwegian Research CentreOsloNorway
  3. 3.Hildebrand Department of Petroleum and Geosystems EngineeringThe University of Texas at AustinAustinUSA

Personalised recommendations