Advertisement

Perturbation Solutions for Flow in a Slowly Varying Fracture and the Estimation of Its Transmissivity

  • Zhihe WangEmail author
  • Chaoshui Xu
  • Peter Dowd
Article

Abstract

Flow in fractures or channels is of interest in many environmental and geotechnical applications. Most previously published perturbation analyses for fracture flow assume that the ratio of the flow in the fracture aperture direction to the flow in the fracture length direction is of the same order as the ratio of mean fracture aperture to fracture length, and hence, the dominant flow is in the fracture length direction. This assumption may impose an overly strict requirement for the flow in the fracture length direction to be dominant, which limits the applicability of the solutions. The present study uses the ratio of aperture variation to length as the perturbation parameter to derive perturbation solutions for flow in two-dimensional fractures under both the pressure boundary condition (PBC) and the flow rate boundary condition (FBC). The solutions are cross-validated with direct numerical solutions of the Navier–Stokes equations and with solutions from published perturbation analyses using the geometry of two-dimensional symmetric wedges and fractures with sinusoidally varying walls. The study shows that compared with the PBC solution, the FBC solution is in a closer agreement with simulation results and provides a better estimate of the fracture transmissivity especially when the inertial effects are more than moderate. The improvement is due mainly to the FBC solution providing a more accurate quantification of the inertial effects. The solutions developed in this study provide improved means of analysing the hydraulic properties of fractures/channels and can be applied to complex flow conditions and fracture geometries.

Keywords

Fracture flow Transmissivity Perturbation solution Pressure boundary condition Flow rate boundary condition 

Notes

Acknowledgements

This work received financial support from a joint scholarship provided by the China Scholarship Council (CSC) and The University of Adelaide (No. 201506430003).

References

  1. Basha, H.A., El-Asmar, W.: The fracture flow equation and its perturbation solution. Water Resour. Res. 39, 1365 (2003).  https://doi.org/10.1029/2003WR002472 CrossRefGoogle Scholar
  2. Berkowitz, B.: Characterizing flow and transport in fractured geological media: a review. Adv. Water Resour. 25, 861–884 (2002).  https://doi.org/10.1016/S0309-1708(02)00042-8 CrossRefGoogle Scholar
  3. Brown, S.R.: Fluid flow through rock joints: the effect of surface roughness. J. Geophys. Res. 92, 1337–1347 (1987).  https://doi.org/10.1029/JB092iB02p01337 CrossRefGoogle Scholar
  4. Brush, D.J., Thomson, N.R.: Fluid flow in synthetic rough-walled fractures: Navier–Stokes, Stokes, and local cubic law simulations. Water Resour. Res. 39, 1085 (2003).  https://doi.org/10.1029/2002WR001346 CrossRefGoogle Scholar
  5. Crandall, D., Ahmadi, G., Smith, D.H.: Computational modeling of fluid flow through a fracture in permeable rock. Transp. Porous Media 84, 493–510 (2010).  https://doi.org/10.1007/s11242-009-9516-9 CrossRefGoogle Scholar
  6. Ge, S.: A governing equation for fluid flow in rough fractures. Water Resour. Res. 33, 53–61 (1997).  https://doi.org/10.1029/96WR02588 CrossRefGoogle Scholar
  7. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, New York (2014)Google Scholar
  8. Hasegawa, E., Fukuoka, N.: Leakage of a fluid through a narrow channel with a wavy wall. Bull. JSME 23, 2042–2046 (1980).  https://doi.org/10.1248/cpb.37.3229 CrossRefGoogle Scholar
  9. Hasegawa, E., Izuchi, H.: On steady flow through a channel consisting of an uneven wall and a plane wall part 1. Case of no relative motion in two walls. Bull. JSME 26, 532–542 (1983).  https://doi.org/10.1248/cpb.37.3229 Google Scholar
  10. Huang, N., Liu, R., Jiang, Y., Li, B., Yu, L.: Effects of fracture surface roughness and shear displacement on geometrical and hydraulic properties of three-dimensional crossed rock fracture models. Adv. Water Resour. 113, 30–41 (2018).  https://doi.org/10.1016/j.advwatres.2018.01.005 CrossRefGoogle Scholar
  11. Hunt, A.G., Sahimi, M.: Transport and reaction in porous media: percolation scaling, critical-path analysis, and effective-medium approximation. Rev. Geophys. (2017).  https://doi.org/10.1002/2017RG000558 Google Scholar
  12. Jiang, Q., Yao, C., Ye, Z., Zhou, C.: Seepage flow with free surface in fracture networks. Water Resour. Res. 49, 176–186 (2013).  https://doi.org/10.1029/2012WR011991 CrossRefGoogle Scholar
  13. Jiang, Q., Ye, Z., Zhou, C.: A numerical procedure for transient free surface seepage through fracture networks. J. Hydrol. 519, 881–891 (2014).  https://doi.org/10.1016/j.jhydrol.2014.07.066 CrossRefGoogle Scholar
  14. Kitanidis, P.K., Dykaar, B.B.: Stokes flow in a slowly varying two-dimensional periodic pore. Transp. Porous Media 26, 89–98 (1997).  https://doi.org/10.1023/A:1006575028391 CrossRefGoogle Scholar
  15. Konzuk, J.S., Kueper, B.H.: Evaluation of cubic law based models describing single-phase flow through a rough-walled fracture. Water Resour. Res. 40, 1–17 (2004).  https://doi.org/10.1029/2003WR002356 CrossRefGoogle Scholar
  16. Kundu, P.K., Cohen, I.M.: Fluid Mechanics. Academic Press, New York (2008)Google Scholar
  17. Lomize, G.M.: Filtratsiia v Treshchinovatykh Porod (Water Flow in Jointed Rock) (in Russian) (1951)Google Scholar
  18. Nazridoust, K., Ahmadi, G., Smith, D.H.: A new friction factor correlation for laminar, single-phase flows through rock fractures. J. Hydrol. 329, 315–328 (2006).  https://doi.org/10.1016/j.jhydrol.2006.02.032 CrossRefGoogle Scholar
  19. Nicholl, M.J., Rajaram, H., Glass, R.J., Detwiler, R.: Saturated flow in a single fracture: evaluation of the Reynolds equation in measured aperture fields. Water Resour. Res. 35, 3361–3373 (1999).  https://doi.org/10.1029/1999WR900241 CrossRefGoogle Scholar
  20. Olsson, R., Barton, N.: An improved model for hydromechanical coupling during shearing of rock joints. Int. J. Rock Mech. Min. Sci. 38, 317–329 (2001).  https://doi.org/10.1016/S1365-1609(00)00079-4 CrossRefGoogle Scholar
  21. Oron, A.P., Berkowitz, B.: Flow in rock fractures: the local cubic law assumption reexamined. Water Resour. Res. 34, 2811–2825 (1998).  https://doi.org/10.1029/98WR02285 CrossRefGoogle Scholar
  22. Patir, N., Cheng, H.S.: An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. J. Lubr. Technol. 100, 12–17 (1978).  https://doi.org/10.1115/1.3453103 CrossRefGoogle Scholar
  23. Pyrak-Nolte, L.J., Nolte, D.D.: Approaching a universal scaling relationship between fracture stiffness and fluid flow. Nat. Commun. 7, 10663 (2016).  https://doi.org/10.1038/ncomms10663 CrossRefGoogle Scholar
  24. Richeng, L., Bo, L., Yujing, J., Liyuan, Y.: A numerical approach for assessing effects of shear on equivalent permeability and nonlinear flow characteristics of 2-D fracture networks. Adv. Water Resour. 111, 289–300 (2018).  https://doi.org/10.1016/j.advwatres.2017.11.022 CrossRefGoogle Scholar
  25. Sisavath, S., Al-Yaaruby, A., Pain, C.C., Zimmerman, R.W.: A simple model for deviations from the cubic law for a fracture undergoing dilation or closure. Pure. Appl. Geophys. 160, 1009–1022 (2003).  https://doi.org/10.1007/PL00012558 CrossRefGoogle Scholar
  26. Van Dyke, M.: Slow variations in continuum mechanics. Adv. Appl. Mech. 25, 1–45 (1987).  https://doi.org/10.1016/S0065-2156(08)70276-X CrossRefGoogle Scholar
  27. Wang, C.-Y.: Drag due to a striated boundary in slow Couette flow. Phys. Fluids 21, 697 (1978).  https://doi.org/10.1063/1.862279 CrossRefGoogle Scholar
  28. Wang, Z., Xu, C., Dowd, P.: A modified cubic law for single-phase saturated laminar flow in rough rock fractures. Int. J. Rock Mech. Min. Sci. 103, 107–115 (2018).  https://doi.org/10.1016/j.ijrmms.2017.12.002 CrossRefGoogle Scholar
  29. Witherspoon, P.A., Wang, J.S.Y., Iwai, K., Gale, J.E.: Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour. Res. 16, 1016–1024 (1980).  https://doi.org/10.1029/WR016i006p01016 CrossRefGoogle Scholar
  30. Xiong, F., Jiang, Q., Ye, Z., Zhang, X.: Nonlinear flow behavior through rough-walled rock fractures: the effect of contact area. Comput. Geotech. 102, 179–195 (2018).  https://doi.org/10.1016/j.compgeo.2018.06.006 CrossRefGoogle Scholar
  31. Xu, C., Dowd, P.A., Tian, Z.F.: A simplified coupled hydro-thermal model for enhanced geothermal systems. Appl. Energy 140, 135–145 (2015).  https://doi.org/10.1016/j.apenergy.2014.11.050 CrossRefGoogle Scholar
  32. Xu, C., Fidelibusk, C., Wang, Z., Dowd, P.: A simplified equivalent pipe network approach to model flow in poro-fractured rock masses (2018)Google Scholar
  33. Yang, G., Myer, L.R., Brown, R., Cook, G.W.: Microscopic analysis of macroscopic transport properties of single natural fractures using graph theory alogrithms. Geophys. Res. Lett. 22, 1429–1432 (1995)CrossRefGoogle Scholar
  34. Yeo, I.W., de Freitas, M.H., Zimmerman, R.W.: Effect of shear displacement on the aperture and permeability of a rock fracture. Int. J. Rock Mech. Min. Sci. 35, 1051–1070 (1998).  https://doi.org/10.1016/S0148-9062(98)00165-X CrossRefGoogle Scholar
  35. Zimmerman, R.W.: Fluid flow in rock fractures. In: Proceedings of the 11th International Conference on Computer Methods and Advances in Geomechanics, pp. 89–107. Turin, Italy (2005)Google Scholar
  36. Zimmerman, R., Bodvarsson, G.: Hydraulic conductivity of rock fractures. Transp. Porous Media 23, 1–30 (1996).  https://doi.org/10.1007/BF00145263 CrossRefGoogle Scholar
  37. Zimmerman, R.W., Kumar, S., Bodvarsson, G.S.: Lubrication theory analysis of the permeability of rough-walled fractures. Int. J. Rock Mech. Min. Sci. 28, 325–331 (1991).  https://doi.org/10.1016/0148-9062(91)90597-F CrossRefGoogle Scholar
  38. Zimmerman, R.W., Al-Yaarubi, A., Pain, C.C., Grattoni, C.A.: Non-linear regimes of fluid flow in rock fractures. Int. J. Rock Mech. Min. Sci. 41, 1–7 (2004).  https://doi.org/10.1016/j.ijrmms.2004.03.036 CrossRefGoogle Scholar
  39. Zou, L., Jing, L., Cvetkovic, V.: Modeling of solute transport in a 3D rough-walled fracture-matrix system. Transp. Porous Media 116, 1005–1029 (2017).  https://doi.org/10.1007/s11242-016-0810-z CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Civil, Environmental and Mining EngineeringThe University of AdelaideAdelaideAustralia
  2. 2.School of Resource and Environmental EngineeringWuhan University of Science and TechnologyWuhanChina

Personalised recommendations