Advertisement

A Pore-Scale Model for Permeable Biofilm: Numerical Simulations and Laboratory Experiments

  • David Landa-Marbán
  • Na Liu
  • Iuliu S. Pop
  • Kundan Kumar
  • Per Pettersson
  • Gunhild Bødtker
  • Tormod Skauge
  • Florin A. Radu
Article
  • 3 Downloads

Abstract

In this paper, we derive a pore-scale model for permeable biofilm formation in a two-dimensional pore. The pore is divided into two phases: water and biofilm. The biofilm is assumed to consist of four components: water, extracellular polymeric substance (EPS), active bacteria, and dead bacteria. The flow of water is modeled by the Stokes equation, whereas a diffusion–convection equation is involved for the transport of nutrients. At the biofilm–water interface, nutrient transport and shear forces due to the water flux are considered. In the biofilm, the Brinkman equation for the water flow, transport of nutrients due to diffusion and convection, displacement of the biofilm components due to reproduction/death of bacteria, and production of EPS are considered. A segregated finite element algorithm is used to solve the mathematical equations. Numerical simulations are performed based on experimentally determined parameters. The stress coefficient is fitted to the experimental data. To identify the critical model parameters, a sensitivity analysis is performed. The Sobol sensitivity indices of the input parameters are computed based on uniform perturbation by ± 10% of the nominal parameter values. The sensitivity analysis confirms that the variability or uncertainty in none of the parameters should be neglected.

Keywords

Biofilm Numerical simulations Laboratory experiments Microbial enhanced oil recovery Porosity 

List of Symbols

c

Nutrient concentration

D

Nutrient diffusion coefficient

d

Biofilm thickness

J

Nutrient flux

k

Permeability

\(k_\mathrm{res}\)

Bacterial decay rate coefficient

\(k_\mathrm{str}\)

Stress coefficient

\(k_{n}\)

Monod half-velocity coefficient

L

Pore length

p

Pressure

q

Water velocity

S

Tangential shear stress

T

Time

U

Reference water velocity

u

Velocity of the biomass

W

Pore width

Y

Growth yield coefficient

Greek Symbols

\(\mu \)

Dynamic viscosity

\(\mu _\mathrm{n}\)

Maximum rate of nutrient utilization

\(\nu \)

Unitary normal vector

\(\nu _n\)

Interface velocity

\(\varPhi \)

Growth velocity potential

\(\rho \)

Density

\(\tau \)

Unitary tangential vector

\(\theta \)

Volume fraction

Subscripts/Superscripts

a

Active bacteria

b

Biofilm

d

Dead bacteria

i

Input

o

Output

e

EPS

w

Water

Abbreviations

ALE

Arbitrary Lagrangian–Eulerian

EPS

Extracellular polymeric substance

MEOR

Microbial enhanced oil recovery

Notes

Acknowledgements

The work of DLM, NL, KK, PP, GB, TS, and FAR was partially supported by GOE-IP and the Research Council of Norway through the projects IMMENS No. 255426 and CHI No. 255510. ISP was supported by the Research Foundation-Flanders (FWO), Belgium, through the Odysseus programme (Project G0G1316N) and the Akademia grant of Equinor.

References

  1. Ahmad, I., Husain, F.M.: Biofilms in Plant and Soil Health. Wiley, Hoboken (2017).  https://doi.org/10.1002/9781119246329 CrossRefGoogle Scholar
  2. Alpkvist, K., Klapper, I.: A multidimensional multispecies continuum model for heterogeneous biofilm development. Bull. Math. Biol. 69, 765–789 (2007).  https://doi.org/10.1007/s11538-006-9168-7 CrossRefGoogle Scholar
  3. Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967).  https://doi.org/10.1017/S0022112067001375 CrossRefGoogle Scholar
  4. Bitton, G.: Wastewater Microbiology. Wiley Series in Ecological and Applied Microbiology, p. 315. Wiley, Hoboken (2005)CrossRefGoogle Scholar
  5. Boltz, J.P., Smets, B.F., Rittmann, B.E., van Loosdrecht, M.C.M., Morgenroth, E., Daigger, G.T.: From biofilm ecology to reactors: a focused review. J. Fluid Mech. 75, 1753–1760 (2017).  https://doi.org/10.2166/wst.2017.061 CrossRefGoogle Scholar
  6. Bringedal, C., Berre, I., Pop, I.S., Radu, F.A.: Upscaling of non-isothermal reactive porous media flow with changing porosity. Transp. Porous Media 114, 371–393 (2016).  https://doi.org/10.1007/s11242-015-0530-9 CrossRefGoogle Scholar
  7. Bringedal, C., Kumar, K.: Effective behavior near clogging in upscaled equations for non-isothermal reactive porous media flow. Transp. Porous Media 120, 553–577 (2017).  https://doi.org/10.1007/s11242-017-0940-y CrossRefGoogle Scholar
  8. Cao, Z., Liu, G., Zhan, H., Li, C., You, Y., Yang, C., Jiang, H.: Pore structure characterization of Chang-7 tight sandstone using MICP combined with N2GA techniques and its geological control factors. Sci. Rep. 6, 36919 (2016).  https://doi.org/10.1038/srep36919 CrossRefGoogle Scholar
  9. Crittenden, J.C., Trussell, R.R., Hand, D.W., Howe, K.J., Tchobanoglous, G.: MWH’s Water Treatment: Principles and Design. Wiley, Hoboken (2012).  https://doi.org/10.1002/9781118131473 CrossRefGoogle Scholar
  10. Deng, W., Cardenas, M.B., Kirk, M.F., Altman, S.J., Bennett, P.C.: Effect of permeable biofilm on micro-and macro-scale flow and transport in bioclogged pores. Environ. Sci. Technol. 47, 11092–11098 (2013).  https://doi.org/10.1021/es402596v CrossRefGoogle Scholar
  11. Donea, J. Huerta, A., Ponthot, J.-P, Rodríguez-Ferran, A.: Arbitrary Lagrangian–Eulerian Methods. Enc. Comput. Mech. (2004).  https://doi.org/10.1002/0470091355.ecm009
  12. Donlan, R.M.: Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 8, 881 (2002).  https://doi.org/10.3201/eid0809.020063 CrossRefGoogle Scholar
  13. Duddu, R., Chopp, D.L., Moran, B.: A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment. Biotechnol. Bioeng. 103, 92–104 (2009).  https://doi.org/10.1002/bit.22233 CrossRefGoogle Scholar
  14. Dumitrache, C.A., Petrache, A.: Interface condition for the coupling of a fluid and porous media. Acta Technica Napocensis Ser. Appl. Math. Mech. Eng. 55(2), 1221–5872 (2012)Google Scholar
  15. Esmaili, S., Eslahchi, M.R.: Application of collocation method for solving a parabolic–hyperbolic free boundary problem which models the growth of tumor with drug application. Math. Methods Appl. Sci. 40, 1711–1733 (2017).  https://doi.org/10.1002/mma.4092 CrossRefGoogle Scholar
  16. Gallinato, O., Poignard, C.: Superconvergent second order Cartesian method for solving free boundary problem for invadopodia formation. J. Comput. Phys. 339, 412–431 (2017).  https://doi.org/10.1016/j.jcp.2017.03.010 CrossRefGoogle Scholar
  17. Horn, H., Lacknerk, S.: Modeling of biofilm systems: a review. Adv. Biochem. Eng. Biotechnol. (2014).  https://doi.org/10.1007/10_2014_275
  18. Hornung, U.: Homogenization and Porous Media. Interdisciplinary Applied Mathematics, p. 63. Springer, New York (1997)CrossRefGoogle Scholar
  19. Hoštacká, A., Čižnár, I., Štefkovičová, M.: Temperature and pH affect the production of bacterial biofilm. Folia Microbiologica 55, 75–78 (2010).  https://doi.org/10.1007/s12223-010-0012-y CrossRefGoogle Scholar
  20. Kumar, K., Wheeler, M.F., Wick, T.: Reactive flow and reaction-induced boundary movement in a thin channel. SIAM J. Sci. Comput. 35(6), B1235–B1266 (2013)CrossRefGoogle Scholar
  21. Kokare, C.R., Chakraborty, S., Khopade, A.N., Mahadik, K.R.: Biofilm: importance and applications. Indian J. Biotechnol. 8, 129–168 (2009)Google Scholar
  22. Landa-Marbán, D., Radu, F.A., Nordbotten, J.M.: Modeling and simulation of microbial enhanced oil recovery including interfacial area. Transp. Porous Media 120, 395–413 (2017).  https://doi.org/10.1007/s11242-017-0929-6 CrossRefGoogle Scholar
  23. Lewandowski, Z., Beyenal, H.: In: Wuertz, S., Bishop, P.L., Wielderer, P.A. (eds.) Biofilms in Wastewater Treatment—An Interdisciplinary Approach, p. 156. IWA Publishing, London (2003)Google Scholar
  24. Liu, N., Skauge, T., Landa-Marbán, D., Hovland, B., Thorbjørnsen, B., Radu, F.A., Vik, B.F., Baumann, T., Bødtker, G.: Microfluidic study of effects of flowrate and nutrient concentration on biofilm accumulation and adhesive strength in a microchannel. J. Ind. Microbiol. Biotechnol. (2018) (Submitted)Google Scholar
  25. Mikelić, A., Jäger, W.: On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60, 1111–1127 (2000).  https://doi.org/10.1137/S003613999833678X CrossRefGoogle Scholar
  26. Monod, J.: The growth of bacterial cultures. Annu. Rev. Microbiol. 3, 371–394 (1949).  https://doi.org/10.1146/annurev.mi.03.100149.002103 CrossRefGoogle Scholar
  27. Murphy, E.M., Ginn, T.R.: Modeling microbial processes in porous media. Hydrogeol. J. 8, 142–158 (2000).  https://doi.org/10.1007/s100409900043 CrossRefGoogle Scholar
  28. Parsek, M.R., Fuqua, C.: Biofilms 2003: emerging themes and challenges in studies of surface-associated microbial life. J. Bacteriol. 186, 4427–4440 (2004).  https://doi.org/10.1128/JB.186.14.4427-4440.2004 CrossRefGoogle Scholar
  29. Peszynska, M., Trykozko, A., Iltis, G., Schlueter, S., Wildenschild, D.: Biofilm growth in porous media: experiments, computational modeling at the porescale, and upscaling. Adv. Water Res. 95, 288–301 (2016).  https://doi.org/10.1016/j.advwatres.2015.07.008 CrossRefGoogle Scholar
  30. Piciorenau, C., van Loosdrecht, M.C.M., Heijnen, J.J.: Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol. Bioeng. (1998).  https://doi.org/10.1002/(SICI)1097-0290(19980405)58:1<101::AID-BIT11>3.0.CO;2-M
  31. Piciorenau, C., van Loosdrecht, M.C.M., Heijnen, J.J.: Modelling and predicting biofilm structure. In: Allison, D., Gilbert, P., Lappin-Scott, H., Wilson, M. (eds.) Community Structure and Co-operation in Biofilms (Society for General Microbiology Symposia), pp. 129–166. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  32. Ray, N., van Noorden, T., Radu, F.A., Friess, W., Knabner, P.: Drug release from collagen matrices including an evolving microstructure. ZAMM 93, 811–822 (2013).  https://doi.org/10.1002/zamm.201200196 CrossRefGoogle Scholar
  33. Rubol, S., Freixa, A., Carles-Brangarí, A., Fernàndez-Garcia, D., Romaní, A.M., Sanchez-Vila, X.: Drug release from collagen matrices including an evolving microstructure. J. Hydrol. 517, 317–327 (2014).  https://doi.org/10.1016/j.jhydrol.2014.05.041 CrossRefGoogle Scholar
  34. Saffman, P.G.: On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50, 93–101 (1971).  https://doi.org/10.1002/sapm197150293 CrossRefGoogle Scholar
  35. Schulz, R., Knabner, P.: Derivation and analysis of an effective model for biofilm growth in evolving porous media. Math. Method Appl. Sci. 40, 2930–2948 (2016).  https://doi.org/10.1002/mma.4211 CrossRefGoogle Scholar
  36. Schwarzenbach, R.P., Gschwend, P.M., Imboden, D.M.: Environmental Organic Chemistry. Wiley, New York (1993)Google Scholar
  37. Seki, K., Thullner, M., Hanada, J., Miyazaki, T.: Moderate bioclogging leading to preferential flow paths in biobarriers. Groundw. Monit. Remediat. 26, 68–76 (2006).  https://doi.org/10.1111/j.1745-6592.2006.00086.x CrossRefGoogle Scholar
  38. Sen, R.: Biotechnology in petroleum recovery: the microbial EOR. Prog. Energy Combust. Sci. 34, 714–724 (2008).  https://doi.org/10.1016/j.pecs.2008.05.001 CrossRefGoogle Scholar
  39. Smolyak, S.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Sov. Math. Dokl. 4, 240–243 (1963)Google Scholar
  40. Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001).  https://doi.org/10.1016/S0378-4754(00)00270-6 CrossRefGoogle Scholar
  41. Stewart, P.S.: Diffusion in Biofilms. J. Bacteriol. 185, 1485–1491 (2003).  https://doi.org/10.1128/JB.185.5.1485-1491.2003 CrossRefGoogle Scholar
  42. Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93, 964–979 (2008).  https://doi.org/10.1016/j.ress.2007.04.002 CrossRefGoogle Scholar
  43. Tang, Y., Liu, H.: Modeling multidimensional and multispecies biofilms in porous media. Biotechnol. Bioeng. 114, 1679–1687 (2017).  https://doi.org/10.1002/bit.26292 CrossRefGoogle Scholar
  44. Taylor, S., Jaffe, P.R.: Substrate and biomass transport in a porous medium. Water Resour. Res. 26, 2181–2194 (1990).  https://doi.org/10.1029/WR026i009p02181 CrossRefGoogle Scholar
  45. Toyofuko, M., Inaba, T., Kiyokawa, T., Obana, N., Yawata, Y., Nomura, N.: Environmental factors that shape biofilm formation. Biosci. Biotechnol. Biochem. 80, 7–12 (2015).  https://doi.org/10.1080/09168451.2015.1058701 CrossRefGoogle Scholar
  46. Urquiza, J.M., N’Dri, D., Garon, A., Delfour, M.C.: Coupling Stokes and Darcy equations. Appl. Numer. Math. 58, 525–538 (2008).  https://doi.org/10.1016/j.apnum.2006.12.006 CrossRefGoogle Scholar
  47. van Noorden, T.L., Pop, I.S., Ebigbo, A., Helmig, R.: An upscaled model for biofilm growth in a thin strip. Water Resour. Res. (2010).  https://doi.org/10.1029/2009WR008217
  48. Vu, B., Chen, M., Crawford, R.J., Ivanova, E.P.: Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14, 2535–2554 (2009).  https://doi.org/10.3390/molecules14072535 CrossRefGoogle Scholar
  49. Wood, B.D., Whitaker, S.: Diffusion and reaction in biofilms. Chem. Eng. Sci. 53, 397–425 (1998).  https://doi.org/10.1016/S0009-2509(97)00319-9 CrossRefGoogle Scholar
  50. Xiu, D., Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002).  https://doi.org/10.1137/S1064827501387826 CrossRefGoogle Scholar
  51. Yang, G., Weigand, B., Terzis, A., Weishaupt, K., Helmig, R.: Numerical simulation of turbulent flow and heat transfer in a three-dimensional channel coupled with flow through porous structures. Transp. Porous Media 122, 145–167 (2017).  https://doi.org/10.1007/s11242-017-0995-9 CrossRefGoogle Scholar
  52. Zhang, T.C., Bishop, P.L.: Density, porosity, and pore structure of biofilms. Water Res. 28, 2267–2277 (1994).  https://doi.org/10.1016/0043-1354(94)90042-6 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Mathematics and Natural SciencesUniversity of BergenBergenNorway
  2. 2.Uni Research CIPRBergenNorway
  3. 3.Faculty of SciencesHasselt UniversityDiepenbeekBelgium

Personalised recommendations