Advertisement

Transport in Porous Media

, Volume 127, Issue 2, pp 481–506 | Cite as

Numerical Simulation of Gas/Solid Heat Transfer in Metallic Foams: A General Correlation for Different Porosities and Pore Sizes

  • Azade Jafarizade
  • Masoud PanjepourEmail author
  • Mahmood Meratian
  • Mohsen Davazdah Emami
Article
  • 114 Downloads

Abstract

In the present research work, numerical simulations were performed to investigate the effects of structural parameters on fluid flow and heat transfer under unsteady state conditions in aluminium foams, with various physical specifications such as different porosities (76–96%), pores diameter (100–500 μm) and tortuosity (1.024–1.14), by meshing computed micro-tomography images. In all the simulated cases, the fluid was considered as air with a temperature of 500 K and different superficial velocities (1–6 m/s) entered the foam with a temperature of 300 K. Calculation of the pressure gradient based on a generic formula ΔP/L = αv + βv2 shows that by increasing porosity and pore diameter, coefficients α and β decrease. Moreover, heat transfer analysis shows that the average convection heat transfer coefficient (have) depends on the geometrical parameters of the foam and also on the superficial velocity of the fluid. In fact, the minor changes in the pore diameter can greatly affect have (e.g. the variation of have for samples with 86% porosity at inlet velocity of 5 m/s and different pore diameters from 500 to 100 μm: 250 to 600 J/m2 s K). However, the porosity variations do not have significant effects on have. On the other hand, by using the nonlinear least square fitting technique and also including the structural factor (Fs, function of the foam geometrical parameters) to the Nu correlation, the equation Nu = 0.0305 Re0.77 Fs [where Fs = ((1 − ε)/τ)−0.27 (dp/dt)−5.108] for determining the Nu in the different foams has been proposed. The equation and simulated results are agreed with each other very well and additionally are similar to the previous studies. Therefore, it’s expected that this equation can be used in design and performance evaluation of porous heat exchangers and porous catalysts.

Keywords

Fluid flow Convection heat transfer Foam structural factor Micro-tomography Nusselt number 

List of symbols

Cf

Inertia coefficient

Cp

Specific heat (J kg−1 K−1)

dp

Pore diameter (µm)

ds

Strut diameter (µm)

dt

Total diameter (pore diameter + strut diameter) (µm)

f

Friction factor

hl

Local heat transfer coefficient (W m−2 K−1)

\( \bar{h}_{\text{l}} \)

Average local heat transfer coefficient (W m−2 K−1)

have

Average heat transfer coefficient (W m−2 K−1)

K

Permeability (m2)

k

Thermal conductivity(W m−1 K−1)

Nu

Nusselt number

P

Pressure (Pa)

ΔP

Pressure drop (Pa)

Pr

Prandtl number

q

Heat rate (W)

Re

Reynolds number

T

Temperature (K)

\( T_{\text{f}}^{0} \)

Initial temperature of fluid (K)

\( T_{\text{s}}^{0} \)

Initial temperature of foam (K)

Tsl

Local temperature of foam (K)

Teq

Equilibrium temperature

t

Time

\( t_{\text{eq}} \)

Equilibrium time

v

Velocity (m s−1)

x, y, z

Cartesian coordinates (m)

L

Foam length (mm)

\( s_{0} \)

Specific surface area (m−1)

Greek symbols

α

Darcian coefficient (kg m−3 s−1)

β

Non-Darcian coefficient (kg m−4)

θ

Non-dimensional temperature

ρ

Density (kg m−3)

µ

Dynamic viscosity (kg m−1 s−1)

ε

Porosity

τ

Tortuosity

Subscripts

air

Air, in the pore region

ave

Average

f

Fluid

l

Local

s

Solid

Notes

Acknowledgements

This study was conducted in the Particulate Materials Research Group (Department of Materials Engineering, Isfahan University of Technology). The authors would like to express great appreciation to Dr. Andreas Wiegmann for the GeoDict (trial version) software.

References

  1. Ambrosio, G., Bianco, N., Chiu, W.K., Iasiello, M., Naso, V., Oliviero, M.: The effect of open-cell metal foams strut shape on convection heat transfer and pressure drop. Appl. Therm. Eng. 103, 333–343 (2016)Google Scholar
  2. Badruddin, I.A., Zainal, Z., Narayana, P.A., Seetharamu, K.: Numerical analysis of convection conduction and radiation using a non-equilibrium model in a square porous cavity. Int. J. Therm. Sci. 46(1), 20–29 (2007)Google Scholar
  3. Banhart, J., Ashby, M., Fleck, N.: Metal foams and porous metal structures. In: Conference on Metal Foams and Porous Metal Structures, p. 16 (1999)Google Scholar
  4. Bhattacharya, A., Calmidi, V., Mahajan, R.: Thermophysical properties of high porosity metal foams. Int. J. Heat Mass Transf. 45(5), 1017–1031 (2002)Google Scholar
  5. Bidault, F., Brett, D., Middleton, P., Abson, N., Brandon, N.: A new application for nickel foam in alkaline fuel cells. Int. J. Hydrog. Energy 34(16), 6799–6808 (2009)Google Scholar
  6. Bodla, K.K., Murthy, J.Y., Garimella, S.V.: Microtomography-based simulation of transport through open-cell metal foams. Numer. Heat Transf. Part A Appl. 58(7), 527–544 (2010)Google Scholar
  7. Boomsma, K., Poulikakos, D.: On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam. Int. J. Heat Mass Transf. 44(4), 827–836 (2001)Google Scholar
  8. Boomsma, K., Poulikakos, D., Ventikos, Y.: Simulations of flow through open cell metal foams using an idealized periodic cell structure. Int. J. Heat Fluid Flow 24(6), 825–834 (2003)Google Scholar
  9. Coussirat, M., Guardo, A., Mateos, B., Egusquiza, E.: Performance of stress-transport models in the prediction of particle-to-fluid heat transfer in packed beds. Chem. Eng. Sci. 62(23), 6897–6907 (2007)Google Scholar
  10. de Lemos, M., Rocamora, F.: Turbulent transport modeling for heated flow in rigid porous media. Heat Transf. 2, 791–796 (2002)Google Scholar
  11. Demirel, Y., Sharma, R., Al-Ali, H.: On the effective heat transfer parameters in a packed bed. Int. J. Heat Mass Transf. 43(2), 327–332 (2000)Google Scholar
  12. Dittus, F., Boelter, L.: University of California publications on engineering. Univ. Calif. Publ. Eng. 2, 371 (1930)Google Scholar
  13. Du, S., Li, M.-J., Ren, Q., Liang, Q., He, Y.-L.: Pore-scale numerical simulation of fully coupled heat transfer process in porous volumetric solar receiver. Energy 140, 1267–1275 (2017)Google Scholar
  14. Dukhan, N., Quinones-Ramos, P.D., Cruz-Ruiz, E., Velez-Reyes, M., Scott, E.P.: One-dimensional heat transfer analysis in open-cell 10-ppi metal foam. Int. J. Heat Mass Transf. 48(25–26), 5112–5120 (2005)Google Scholar
  15. Giani, L., Groppi, G., Tronconi, E.: Mass-transfer characterization of metallic foams as supports for structured catalysts. Ind. Eng. Chem. 44(14), 4993–5002 (2005)Google Scholar
  16. Guardo, A., Coussirat, M., Recasens, F., Larrayoz, M., Escaler, X.: CFD study on particle-to-fluid heat transfer in fixed bed reactors: convective heat transfer at low and high pressure. Chem. Eng. Sci. 61(13), 4341–4353 (2006)Google Scholar
  17. Hsieh, W., Wu, J., Shih, W., Chiu, W.: Experimental investigation of heat-transfer characteristics of aluminum-foam heat sinks. Int. J. Heat Mass Transf. 47(23), 5149–5157 (2004)Google Scholar
  18. Huang, X., Tu, J., Zeng, Z., Xiang, J., Zhao, X.: Nickel foam-supported porous NiO/Ag film electrode for lithium-ion batteries. J. Electrochem. Soc. 155(6), A438–A441 (2008)Google Scholar
  19. Hwang, J.-J., Hwang, G.-J., Yeh, R.-H., Chao, C.-H.: Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams. J. Heat Transf. 124(1), 120–129 (2002)Google Scholar
  20. Inayat, A., Schwerdtfeger, J., Freund, H., Körner, C., Singer, R.F., Schwieger, W.: Periodic open-cell foams: pressure drop measurements and modeling of an ideal tetrakaidecahedra packing. Chem. Eng. Sci. 66(12), 2758–2763 (2011)Google Scholar
  21. Jiang, P.-X., Ren, Z.-P.: Numerical investigation of forced convection heat transfer in porous media using a thermal non-equilibrium model. Int. J. Heat Fluid Flow 22(1), 102–110 (2001)Google Scholar
  22. Kaviany, M.: Principles of Heat Transfer in Porous Media. Springer, Berlin (2012)Google Scholar
  23. Khashan, S., Al-Amiri, A., Pop, I.: Numerical simulation of natural convection heat transfer in a porous cavity heated from below using a non-Darcian and thermal non-equilibrium model. Int. J. Heat Mass Transf. 49(5–6), 1039–1049 (2006)Google Scholar
  24. Kopanidis, A., Theodorakakos, A., Gavaises, E., Bouris, D.: 3D numerical simulation of flow and conjugate heat transfer through a pore scale model of high porosity open cell metal foam. Int. J. Heat Mass Transf. 53(11–12), 2539–2550 (2010)Google Scholar
  25. Kumar, S., Murthy, J.Y.: A numerical technique for computing effective thermal conductivity of fluid-particle mixtures. In: ASME 2004 International Mechanical Engineering Congress and Exposition 2004, pp. 247–257. American Society of Mechanical EngineersGoogle Scholar
  26. Lafdi, K., Mesalhy, O., Shaikh, S.: Experimental study on the influence of foam porosity and pore size on the melting of phase change materials. J. Appl. Phys. 102(8), 083549 (2007)Google Scholar
  27. Mahjoob, S., Vafai, K.: A synthesis of fluid and thermal transport models for metal foam heat exchangers. Int. J. Heat Mass Transf. 51(15–16), 3701–3711 (2008)Google Scholar
  28. Noh, J.-S., Lee, K.B., Lee, C.G.: Pressure loss and forced convective heat transfer in an annulus filled with aluminum foam. Int. Commun. Heat Mass Transf. 33(4), 434–444 (2006)Google Scholar
  29. Odabaee, M., Hooman, K.: Metal foam heat exchangers for heat transfer augmentation from a tube bank. Appl. Therm. Eng. 36, 456–463 (2012)Google Scholar
  30. Paek, J., Kang, B., Kim, S., Hyun, J.: Effective thermal conductivity and permeability of aluminum foam materials. Int. J. Thermophys. 21(2), 453–464 (2000)Google Scholar
  31. Pahlevaninezhad, M., Emami, M.D., Panjepour, M.: The effects of kinetic parameters on combustion characteristics in a sintering bed. Energy 73, 160–176 (2014)Google Scholar
  32. Panerai, F., Ferguson, J.C., Lachaud, J., Martin, A., Gasch, M.J., Mansour, N.N.: Micro-tomography based analysis of thermal conductivity, diffusivity and oxidation behavior of rigid and flexible fibrous insulators. Int. J. Heat Mass Transf. 108, 801–811 (2017)Google Scholar
  33. Petrasch, J., Meier, F., Friess, H., Steinfeld, A.: Tomography based determination of permeability, Dupuit–Forchheimer coefficient, and interfacial heat transfer coefficient in reticulate porous ceramics. Int. J. Heat Fluid Flow 29(1), 315–326 (2008)Google Scholar
  34. Pop, M.A., Geaman, V., Radomir, I., Bedo, T.: Capacity of energy absorption by flick through shock in cooper foams. J. Porous Med. 20(5), 405–415 (2017)Google Scholar
  35. Ranut, P., Nobile, E., Mancini, L.: High resolution microtomography-based CFD simulation of flow and heat transfer in aluminum metal foams. Appl. Therm. Eng. 69(1–2), 230–240 (2014)Google Scholar
  36. Vafai, K., Tien, C.: Boundary and inertia effects on convective mass transfer in porous media. Int. J. Heat Mass Transf. 25(8), 1183–1190 (1982)Google Scholar
  37. Wang, M., Pan, N.: Modeling and prediction of the effective thermal conductivity of random open-cell porous foams. Int. J. Heat Mass Transf. 51(5–6), 1325–1331 (2008)Google Scholar
  38. Wu, Z., Caliot, C., Bai, F., Flamant, G., Wang, Z., Zhang, J., Tian, C.: Experimental and numerical studies of the pressure drop in ceramic foams for volumetric solar receiver applications. Appl. Eng. 87(2), 504–513 (2010)Google Scholar
  39. Wu, Z., Caliot, C., Flamant, G., Wang, Z.: Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances. Int. J. Heat Mass Transf. 54(7–8), 1527–1537 (2011)Google Scholar
  40. Xu, W., Zhang, H., Yang, Z., Zhang, J.: Numerical investigation on the flow characteristics and permeability of three-dimensional reticulated foam materials. Chem. Eng. Sci. 140(1–3), 562–569 (2008)Google Scholar
  41. Younis, L., Viskanta, R.: Experimental determination of the volumetric heat transfer coefficient between stream of air and ceramic foam. Int. J. Heat Mass Transf. 36(6), 1425–1434 (1993)Google Scholar
  42. Zafari, M., Panjepour, M., Emami, M.D., Meratian, M.: 3D numerical investigation of fluid flow through open-cell metal foams using micro-tomography images. J. Porous Med. 17(11), 1019–1029 (2014)Google Scholar
  43. Zafari, M., Panjepour, M., Emami, M.D., Meratian, M.: Microtomography-based numerical simulation of fluid flow and heat transfer in open cell metal foams. Appl. Therm. Eng. 80, 347–354 (2015)Google Scholar
  44. Zafari, M., Panjepour, M., Meratian, M., Emami, M.D.: CFD simulation of forced convective heat transfer by tetrakaidecahedron model in metal foams. J. Porous Med. 19(1), 1–11 (2016)Google Scholar
  45. Zhao, C.: Review on thermal transport in high porosity cellular metal foams with open cells. Int. J. Heat Mass Transf. 55(13–14), 3618–3632 (2012)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Azade Jafarizade
    • 1
  • Masoud Panjepour
    • 1
    Email author
  • Mahmood Meratian
    • 1
  • Mohsen Davazdah Emami
    • 2
  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Department of Mechanical EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations