Transport in Porous Media

, Volume 126, Issue 2, pp 455–474 | Cite as

Unstable Displacement of Non-aqueous Phase Liquids with Surfactant and Polymer

  • Soroush Aramideh
  • Pavlos P. Vlachos
  • Arezoo M. ArdekaniEmail author


In this paper, we study two-phase multicomponent displacement of two immiscible fluids in both homogeneous and heterogeneous porous media. In many applications such as enhanced oil recovery, fluid mixing and spreading can be detrimental to the efficacy of the process. Here, we show that when an initially immobile phase is being displaced by a finite-size slug of solvents (surfactant and polymer), viscous fingering significantly enhances mixing and spreading of solvents. These effects are similar to those caused by medium heterogeneity and lead to poor displacement efficiency. We first quantify the displacement efficiency subject to different mobility ratios, Peclet numbers, and levels of medium heterogeneity. We observe a non-monotonic behavior in displacement efficiency as a function of mobility ratio, indicating that although stable frontal interface is desirable, miscible viscous fingering on the rear interface will eventually disintegrate the solvents slugs and reduce the displacement efficiency. Then, we show that miscible viscous fingering developing on the rear interface of the chemical slug could be greatly suppressed when viscosity contrast is gradually decreased using exponential or linear functions, leading to 10% increase in displacement efficiency while using the same amount of chemicals. To elucidate this low displacement efficiency, we study the evolution of mixing, spreading, and interfacial length and show that while higher viscosity ratios are quite effective in mobilizing the initially immobile phase in 1D displacements, they are in fact detrimental in 2D unstable displacements since they enhance mixing and spreading of solvents.


Porous media Viscous fingering Surfactant–polymer flooding Enhanced oil recovery 



This research was made possible by a Grant from the Pioneer Oil Company. The authors would like to thank Bryan Clayton for his support and useful discussion.


  1. Abrams, A.: The influence of fluid viscosity, interfacial tension, and flow velocity on residual oil saturation left by waterflood. Soc. Pet. Eng. J. 15(05), 437 (1975)CrossRefGoogle Scholar
  2. Al-Wahaibi, Y., Grattoni, C., Muggeridge, A.: Drainage and imbibition relative permeabilities at near miscible conditions. J. Pet. Sci. Eng. 53(3–4), 239 (2006)CrossRefGoogle Scholar
  3. Amooie, M.A., Soltanian, M.R., Moortgat, J.: Hydrothermodynamic mixing of fluids across phases in porous media. Geophys. Res. Lett. 44(8), 3624 (2017)CrossRefGoogle Scholar
  4. Anton, L., Hilfer, R.: Trapping and mobilization of residual fluid during capillary desaturation in porous media. Phys. Rev. E 59(6), 6819 (1999)CrossRefGoogle Scholar
  5. Araktingi, U.G., Orr Jr., F.: Viscous fingering in heterogeneous porous media. SPE Adv. Technol. Ser. 1(01), 71 (1993)CrossRefGoogle Scholar
  6. Aramideh, S., Vlachos, P.P., Ardekani, A.M.: Pore-scale statistics of flow and transport through porous media. Phys. Rev. E 98(1), 013104 (2018a)Google Scholar
  7. Aramideh, S., Borgohain, R., Naik, P.K., Johnston, C.T., Vlachos, P.P., Ardekani, A.M.: Multi-objective history matching of surfactant–polymer flooding. Fuel 228, 418 (2018b)Google Scholar
  8. Avraam, D., Payatakes, A.: Flow regimes and relative permeabilities during steady-state two-phase flow in porous media. J. Fluid Mech. 293, 207 (1995)CrossRefGoogle Scholar
  9. Bachu, S., Bennion, B.: Effects of in-situ conditions on relative permeability characteristics of CO\(_2\)-brine systems. Environ. Geol. 54(8), 1707 (2008)CrossRefGoogle Scholar
  10. Bear, J.: Dynamics of Fluids in Porous Materials. Society of Petroleum Engineers, Dallas (1972)Google Scholar
  11. Blunt, M., Barker, J., Rubin, B., Mansfield, M., Culverwell, I., Christie, M.: Predictive theory for viscous fingering in compositional displacement. SPE Reserv. Eng. 9(01), 73 (1994)CrossRefGoogle Scholar
  12. Bolster, D., Dentz, M., Carrera, J.: Effective two-phase flow in heterogeneous media under temporal pressure fluctuations. Water Resour. Res. 45, W05408 (2009)Google Scholar
  13. Brooks, R.H., Corey, A.T.: Properties of porous media affecting fluid flow. J. Irrig. Drain. Div. 92(2), 61 (1966)Google Scholar
  14. Brown, C.L., Pope, G.A., Abriola, L.M., Sepehrnoori, K.: Simulation of surfactant-enhanced aquifer remediation. Water Resour. Res. 30(11), 2959 (1994)CrossRefGoogle Scholar
  15. Chatzis, I., Morrow, N.R.: Correlation of capillary number relationships for sandstone. Soc. Pet. Eng. J. 24(05), 555 (1984)CrossRefGoogle Scholar
  16. Chen, C.Y., Meiburg, E.: Miscible porous media displacements in the quarter five-spot configuration. Part 1. The homogeneous case. J. Fluid Mech. 371, 233 (1998)CrossRefGoogle Scholar
  17. Chen, Z., Huan, G., Ma, Y.: Computational Methods for Multiphase Flows in Porous Media, vol. 2. SIAM, Philadelphia (2006)CrossRefGoogle Scholar
  18. Chiogna, G., Hochstetler, D.L., Bellin, A., Kitanidis, P.K., Rolle, M.: Mixing, entropy and reactive solute transport. Geophys. Res. Lett. 39, L20405 (2012)CrossRefGoogle Scholar
  19. Chorin, A.J.: The instability of fronts in a porous medium. Commun. Math. Phys. 91(1), 103 (1983)CrossRefGoogle Scholar
  20. Chuoke, R., Van Meurs, P., van der Poel, C., et al.: The instability of slow, immiscible, viscous liquid-liquid displacements in permeable media. Pet. Trans. AIME 216, 188–194 (1959)Google Scholar
  21. Claridge, E.: A method for designing graded viscosity banks. Soc. Pet. Eng. J. 18(05), 315 (1978)CrossRefGoogle Scholar
  22. Corey, A.T.: The interrelation between gas and oil relative permeabilities. Prod. Mon. 19(1), 38 (1954)Google Scholar
  23. Cushman, J.H., O’Malley, D.: Fickian dispersion is anomalous. J. Hydrol. 531, 161 (2015)CrossRefGoogle Scholar
  24. Dagan, G.: Flow and Transport in Porous Formations. Springer, New York (2012)Google Scholar
  25. Danckwerts, P.: The definition and measurement of some characteristics of mixtures. Appl. Sci. Res. Sect. A 3(4), 279 (1952)CrossRefGoogle Scholar
  26. De Simoni, M., Sánchez-Vila, X., Carrera, J., Saaltink, M.: A mixing ratios-based formulation for multicomponent reactive transport. Water Resour. Res. 43(7) (2007)Google Scholar
  27. De Wit, A., Homsy, G.: Viscous fingering in periodically heterogeneous porous media. II. Numerical simulations. J. Chem. Phys. 107(22), 9619 (1997)CrossRefGoogle Scholar
  28. Delamaide, E., Zaitoun, A., Renard, G., Tabary, R.: Pelican Lake field: first successful application of polymer flooding in a heavy-oil reservoir. SPE Reserv. Eval. Eng. 17(03), 340 (2014)Google Scholar
  29. Delshad, M., Bhuyan, D., Pope, G., Lake, L., et al.: Effect of capillary number on the residual saturation of a three-phase micellar solution. In: SPE Enhanced Oil Recovery Symposium. Society of Petroleum Engineers (1986)Google Scholar
  30. Delshad, M., Pope, G., Sepehrnoori, K.: A compositional simulator for modeling surfactant enhanced aquifer remediation, 1 formulation. J. Contam. Hydrol. 23(4), 303 (1996)CrossRefGoogle Scholar
  31. Dentz, M., Le Borgne, T., Englert, A., Bijeljic, B.: Mixing, spreading and reaction in heterogeneous media: a brief review. J. Contam. Hydrol. 120, 1 (2011)CrossRefGoogle Scholar
  32. Engelberts, W., Klinkenberg, L. et al.: Laboratory experiments on the displacement of oil by water from packs of granular material. In: 3rd World Petroleum Congress. World Petroleum Congress (1951)Google Scholar
  33. Ennis-King, J.P., Paterson, L., et al.: Role of convective mixing in the long-term storage of carbon dioxide in deep saline formations. Spe Journal 10(03), 349 (2005)CrossRefGoogle Scholar
  34. Flory, P.J.: Principles of Polymer Chemistry. Cornell University Press, Ithaca (1953)Google Scholar
  35. Fulcher Jr., R.A., Ertekin, T., Stahl, C.: Effect of capillary number and its constituents on two-phase relative permeability curves. J. Pet. Technol. 37(02), 249 (1985)CrossRefGoogle Scholar
  36. Garcia, J.E., Pruess, K.: Flow instabilities during injection of CO\(_2\) into salineaquifers. Technical Report Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US) (2003)Google Scholar
  37. Garmeh, G., Izadi, M., Salehi, M., Romero, J.L., Thomas, C., Manrique, E.J.: Thermally active polymer to improve sweep efficiency of waterfloods: simulation and pilot design approaches. SPE Reserv. Eval. Eng. 15(01), 86 (2012)Google Scholar
  38. Gelhar, L.W., Axness, C.L.: Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour. Res. 19(1), 161 (1983)CrossRefGoogle Scholar
  39. Habermann, B., et al.: The efficiency of miscible displacement as a function of mobility ratio. Pet. Trans. AIME 219, 264–272 (1960)Google Scholar
  40. Hagoort, J.: Displacement stability of water drives in water-wet connate-water-bearing reservoirs. Soc. Pet. Eng. J. 14(01), 63 (1974)CrossRefGoogle Scholar
  41. Handy, L.L.: Determination of effective capillary pressures for porous media from imbibition data. Pet. Trans. AIME 219, 75–80 (1960)Google Scholar
  42. Hassanzadeh, H., Pooladi-Darvish, M., Keith, D. et al., Modelling of convective mixing in co storage. J. Can. Pet. Technol. 44(10) (2005)Google Scholar
  43. Hidalgo, J.J., Dentz, M., Cabeza, Y., Carrera, J.: Dissolution patterns and mixing dynamics in unstable reactive flow. Geophys. Res. Lett. 42(15), 6357 (2015)CrossRefGoogle Scholar
  44. Jennings, R., Rogers, J., West, T.: Factors influencing mobility control by polymer solutions. J. Pet. Technol. 23(03), 391 (1971)CrossRefGoogle Scholar
  45. Jerauld, G., Davis, H., Scriven, L., et al.: Stability fronts of permanent form in immiscible displacement. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1984)Google Scholar
  46. Jha, B., Cueto-Felgueroso, L., Juanes, R.: Fluid mixing from viscous fingering. Phys. Rev. Lett. 106(19), 194502 (2011)CrossRefGoogle Scholar
  47. Jha, B., Cueto-Felgueroso, L., Juanes, R.: Synergetic fluid mixing from viscous fingering and alternating injection. Phys. Rev. Lett. 111(14), 144501 (2013)CrossRefGoogle Scholar
  48. Jiménez-Martínez, J., Porter, M.L., Hyman, J.D., Carey, J.W., Viswanathan, H.S.: Mixing in a three-phase system: enhanced production of oil-wet reservoirs by CO\(_2\) injection. Geophys. Res. Lett. 43(1), 196 (2016)CrossRefGoogle Scholar
  49. Juanes, R., Lie, K.A.: Numerical modeling of multiphase first-contact miscible flows. Part 2. Front-tracking/streamline simulation. Transp. Porous Media 72(1), 97 (2008)CrossRefGoogle Scholar
  50. Kapoor, V., Gelhar, L.W.: Transport in three-dimensionally heterogeneous aquifers: 1. Dynamics of concentration fluctuations. Water Resour. Res. 30(6), 1775 (1994)CrossRefGoogle Scholar
  51. Kon, W., Pitts, M.J., Surkalo, H., et al.: Mature waterfloods renew oil production by alkaline–surfactant–polymer flooding. In: SPE Eastern Regional Meeting. Society of Petroleum Engineers (2002)Google Scholar
  52. Kou, J., Sun, S.: On iterative IMPES formulation for two phase flow with capillarity in heterogeneous porous media. Int. J. Numer. Anal. Model. Ser. B 1(1), 20 (2010)Google Scholar
  53. Krevor, S., Pini, R., Zuo, L., Benson, S.M.: Relative permeability and trapping of CO\(_2\) and water in sandstone rocks at reservoir conditions. Water Resour. Res. 48(2) (2012)Google Scholar
  54. Lake, L.W., et al.: Enhanced Oil Recovery. Prentice Hall, Englewood Cliffs (1989)Google Scholar
  55. Le Borgne, T., Dentz, M., Bolster, D., Carrera, J., De Dreuzy, J.R., Davy, P.: Non-Fickian mixing: temporal evolution of the scalar dissipation rate in heterogeneous porous media. Adv. Water Resour. 33(12), 1468 (2010)CrossRefGoogle Scholar
  56. Le Borgne, T., Dentz, M., Villermaux, E.: The lamellar description of mixing in porous media. J. Fluid Mech. 770, 458 (2015)CrossRefGoogle Scholar
  57. Lenormand, R., Touboul, E., Zarcone, C.: Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189, 165 (1988)CrossRefGoogle Scholar
  58. Londergan, J.T., Meinardus, H.W., Mariner, P.E., Jackson, R.E., Brown, C.L., Dwarakanath, V., Pope, G.A., Ginn, J.S., Taffinder, S.: DNAPL removal from a heterogeneous alluvial aquifer by surfactant-enhanced aquifer remediation. Groundw. Monit. Remediat. 21(4), 57 (2001)CrossRefGoogle Scholar
  59. Longeron, D.: Influence of very low interfacial tensions on relative permeability. Soc. Pet. Eng. J. 20(05), 391 (1980)CrossRefGoogle Scholar
  60. Maher, J.: Development of viscous fingering patterns. Phys. Rev. Lett. 54(14), 1498 (1985)CrossRefGoogle Scholar
  61. Mirzadeh, M., Bazant, M.Z.: Electrokinetic control of viscous fingering. Phys. Rev. Lett. 119(17), 174501 (2017)CrossRefGoogle Scholar
  62. Mishra, M., Martin, M., De Wit, A.: Differences in miscible viscous fingering of finite width slices with positive or negative log-mobility ratio. Phys. Rev. E 78(6), 066306 (2008)CrossRefGoogle Scholar
  63. Moortgat, J.: Viscous and gravitational fingering in multiphase compositional and compressible flow. Adv. Water Resour. 89, 53 (2016)CrossRefGoogle Scholar
  64. Mulligan, C.N., Yong, R., Gibbs, B.: Surfactant-enhanced remediation of contaminated soil: a review. Eng. Geol. 60(1–4), 371 (2001)CrossRefGoogle Scholar
  65. Nelson, R., Pope, G.: Phase relationships in chemical flooding. Soc. Pet. Eng. J. 18(05), 325 (1978)CrossRefGoogle Scholar
  66. Nittmann, J., Daccord, G., Stanley, H.E.: Fractal growth viscous fingers: quantitative characterization of a fluid instability phenomenon. Nature 314(6007), 141 (1985)CrossRefGoogle Scholar
  67. Pavone, D.: Observations and correlations for immiscible viscous-fingering experiments. SPE Reserv. Eng. 7(02), 187 (1992)CrossRefGoogle Scholar
  68. Peters, E.J., Flock, D.L.: The onset of instability during two-phase immiscible displacement in porous media. Soc. Pet. Eng. J. 21(02), 249 (1981)CrossRefGoogle Scholar
  69. Prouvost, L., Quintard, M.: Stability criteria for the design of graded polymer buffers. J. Pet. Sci. Eng. 3(4), 333 (1990)CrossRefGoogle Scholar
  70. Rabbani, H.S., Or, D., Liu, Y., Lai, C.Y., Lu, N.B., Datta, S.S., Stone, H.A., Shokri, N.: Suppressing viscous fingering in structured porous media. Proc. Natl. Acad. Sci. (2018).
  71. Rashid, B., Bal, A.L., Williams, G.J., Muggeridge, A.H.: Using vorticity to quantify the relative importance of heterogeneity, viscosity ratio, gravity and diffusion on oil recovery. Comput. Geosci. 16(2), 409 (2012)CrossRefGoogle Scholar
  72. Reed, R.L., Healy, R.N.: Some physicochemical aspects of microemulsion flooding: a review. In: Shah, D.O. (ed.) Improved Oil Recovery by Surfactant and Polymer Flooding, pp. 383–437. Elsevier (1977)Google Scholar
  73. Riaz, A., Tchelepi, H.A.: Linear stability analysis of immiscible two-phase flow in porous media with capillary dispersion and density variation. Phys. Fluids 16(12), 4727 (2004)CrossRefGoogle Scholar
  74. Riaz, A., Tchelepi, H.A.: Numerical simulation of immiscible two-phase flow in porous media. Phys. Fluids 18(1), 014104 (2006a)Google Scholar
  75. Riaz, A., Tchelepi, H.A.: Influence of relative permeability on the stability characteristics of immiscible flow in porous media. Transp. Porous Media 64(3), 315 (2006b)Google Scholar
  76. Sabet, N., Hassanzadeh, H., Abedi, J.: Control of viscous fingering by nanoparticles. Phys. Rev. E 96(6), 063114 (2017)CrossRefGoogle Scholar
  77. Saffman, P.: Viscous fingering in Hele-Shaw cells. J. Fluid Mech. 173, 73 (1986)CrossRefGoogle Scholar
  78. Sheng, J.: Modern Chemical Enhanced Oil Recovery: Theory and Practice. Gulf Professional Publishing, Houston (2010)Google Scholar
  79. Sheng, J.J.: A comprehensive review of alkaline–surfactant–polymer (ASP) flooding. Asia-Pac. J. Chem. Eng. 9(4), 471 (2014)Google Scholar
  80. Sigmund, P., Sharma, H., Sheldon, D., Aziz, K.: Rate dependence of unstable waterfloods. SPE Reserv. Eng. 3(02), 401 (1988)CrossRefGoogle Scholar
  81. Sudicky, E.A.: A natural gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resour. Res. 22(13), 2069 (1986)CrossRefGoogle Scholar
  82. Tang, G.Q., Kovscek, A.: High resolution imaging of unstable, forced imbibition in Berea sandstone. Transp. Porous Media 86(2), 617 (2011)CrossRefGoogle Scholar
  83. Taylor, G.I.: Diffusion by continuous movements. Proc. Lond. Math. Soc. 2(1), 196 (1922)CrossRefGoogle Scholar
  84. Tchelepi, H., Orr Jr., F., Rakotomalala, N., Salin, D., Woumeni, R.: Dispersion, permeability heterogeneity, and viscous fingering: acoustic experimental observations and particle-tracking simulations. Phys. Fluids A Fluid Dyn. 5(7), 1558 (1993)CrossRefGoogle Scholar
  85. Tchelepi, H., Orr Jr., F.: Interaction of viscous fingering, permeability heterogeneity, and gravity segregation in three dimensions. SPE Reserv. Eng. 9(04), 266 (1994)CrossRefGoogle Scholar
  86. Watts, J.: A compositional formulation of the pressure and saturation equations. SPE (Soc. Pet. Eng.) Reserv. Eng. (U. S.) 1(3), 243–252 (1986)CrossRefGoogle Scholar
  87. Weiss, W., Baldwin, R.: Planning and implementing a large-scale polymer flood. J. Pet. Technol. 37(04), 720 (1985)CrossRefGoogle Scholar
  88. Winsor, P.A.: Solvent Properties of Amphiphilic Compounds. Butterworths Scientific Publications, London (1954)Google Scholar
  89. Worawutthichanyakul, T., Mohanty, K.K.: Unstable immiscible displacements in oil-wet rocks. Transp. Porous Media 119(1), 205 (2017)CrossRefGoogle Scholar
  90. Yortsos, Y., Hickernell, F.: Linear stability of immiscible displacement in porous media. SIAM J. Appl. Math. 49(3), 730 (1989)CrossRefGoogle Scholar
  91. Yuan, Q., Zhou, X., Zeng, F., Knorr, K.D., Imran, M.: Investigation of concentration–dependent diffusion on frontal instabilities and mass transfer in homogeneous porous media. Can. J. Chem. Eng. 96(1), 323 (2018)CrossRefGoogle Scholar
  92. Zhang, H., Sorbie, K., Tsibuklis, N.: Viscous fingering in five-spot experimental porous media: new experimental results and numerical simulation. Chem. Eng. Sci. 52(1), 37 (1997)CrossRefGoogle Scholar
  93. Zhijian, Q., Yigen, Z., Xiansong, Z., Jialin, D., et al.: A successful ASP flooding pilot in Gudong oil field. In: SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers (1998)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Mechanical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations