Advertisement

Transport in Porous Media

, 80:581 | Cite as

Condition for Break-up of Non-Wetting Fluids in Sinusoidally Constricted Capillary Channels

  • Igor A. BeresnevEmail author
  • Wenqing Li
  • R. Dennis Vigil
Article

Abstract

Analysis of capillary-pressure distribution in single channels with sinusoidal profile shows that surface tension-driven flow in such channels is controlled by the pressure extrema at their “crests” and “troughs”. Formulating the geometric condition for the pressure in the troughs to exceed that in the crests leads to a simple criterion for the spontaneous break-up of the non-wetting fluid in the necks of the constrictions. The criterion reduces to the condition for the Plateau-Rayleigh instability as a limiting case. Similar pressure analysis is applicable to the case of a non-wetting fluid invading an open pore body. Computational-fluid-dynamics experiments have verified the validity of the break-up predicted from the capillary-pressure argument. Although the geometric criterion for the break-up is valid for small capillary numbers, it provides a common framework in which the results of various published studies of a non-wetting phase choke-off in capillary constrictions for a wide range of capillary numbers can be explained and understood.

Keywords

Fluid break-up Instability Capillary flow Porous channels 

Supplementary material

ESM 1 (MPG 25.9MB)

References

  1. Atherton R.W., Homsy G.M.: On the derivation of evolution equations for interfacial waves. Chem. Eng. Commun. 2, 57–77 (1976). doi: 10.1080/00986447608960448 CrossRefGoogle Scholar
  2. Beresnev I.A.: Theory of vibratory mobilization of nonwetting fluids entrapped in pore constrictions. Geophysics 71, N47–N56 (2006)CrossRefGoogle Scholar
  3. Bretherton F.P.: The motion of long bubbles in tubes. J. Fluid Mech. 10, 166–188 (1961). doi: 10.1017/S0022112061000160 CrossRefGoogle Scholar
  4. De Gennes P.-G., Brochard-Wyart F., Quéré D.: Capillarity and Wetting Phenomena. Springer, Heidelberg (2004)Google Scholar
  5. Gauglitz P.A., Radke C.J.: An extended evolution equation for liquid film breakup in cylindrical capillaries. Chem. Eng. Sci. 43, 1457–1465 (1988). doi: 10.1016/0009-2509(88)85137-6 CrossRefGoogle Scholar
  6. Gauglitz P.A., Radke C.J.: The dynamics of liquid film breakup in constricted cylindrical capillaries. J. Colloid Interface Sci. 134, 14–40 (1990). doi: 10.1016/0021-9797(90)90248-M CrossRefGoogle Scholar
  7. Graustein W.C.: Differential Geometry. Dover, New York (2006)Google Scholar
  8. Hammond P.S.: Nonlinear adjustment of a thin annular film of viscous fluid surrounding a thread of another within a circular cylindrical pipe. J. Fluid Mech. 137, 363–384 (1983). doi: 10.1017/S0022112083002451 CrossRefGoogle Scholar
  9. Hemmat M., Borhan A.: Buoyancy-driven motion of drops and bubbles in a periodically constricted capillary. Chem. Eng. Commun. 148-150, 363–384 (1996). doi: 10.1080/00986449608936525 CrossRefGoogle Scholar
  10. Korn G.A., Korn T.K.: Mathematical Handbook for Scientists and Engineers, 2nd edn. McGraw-Hill, New York (1968)Google Scholar
  11. Kovscek A.R., Tang G.-Q., Radke C.J.: Verification of Roof snap off as a foam-generation mechanism in porous media at steady state. Colloids Surf. A Physicochem. Eng. Asp. 302, 251–260 (2007). doi: 10.1016/j.colsurfa.2007.02.035 CrossRefGoogle Scholar
  12. Lamb H.: Hydrodynamics, 6th edn. Cambridge University Press, Cambridge (1997)Google Scholar
  13. Martinez M.J., Udell K.S.: Axisymmetric creeping motion of drops through a periodically constricted tube. In: Wang, T.G. (eds) Drops and Bubbles, AIP Conference Proceedings 197, pp. 222–234. American Institute of Physics, New York (1989)Google Scholar
  14. Melrose, J.C., Brandner, C.F.: Role of capillary forces in determining microscopic displacement efficiency for oil recovery by waterflooding. J. Can. Pet. Technol. October–December, 54–62 (1974)Google Scholar
  15. Middleman S.: Modeling Axisymmetric Flows. Academic Press, New York (1995)Google Scholar
  16. Olbricht W.L., Leal L.G.: The creeping motion of immiscible drops through a converging/diverging tube. J. Fluid Mech. 134, 329–355 (1983). doi: 10.1017/S0022112083003390 CrossRefGoogle Scholar
  17. Roof J.G.: Snap-off of oil droplets in water-wet pores. Soc. Pet. Eng. J. 10, 85–90 (1970). doi: 10.2118/2504-PA Google Scholar
  18. Rossen W.R.: A critical review of Roof snap-off as a mechanism of steady-state foam generation in homogeneous porous media. Colloids Surf. A Physicochem. Eng. Asp. 225, 1–24 (2003). doi: 10.1016/S0927-7757(03)00309-1 CrossRefGoogle Scholar
  19. Tsai T.M., Miksis M.J.: Dynamics of a drop in a constricted capillary tube. J. Fluid Mech. 274, 197–217 (1994). doi: 10.1017/S0022112094002090 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Igor A. Beresnev
    • 1
    Email author
  • Wenqing Li
    • 2
  • R. Dennis Vigil
    • 3
  1. 1.Department of Geological and Atmospheric SciencesIowa State UniversityAmesUSA
  2. 2.Pfizer Global Research and DevelopmentGrotonUSA
  3. 3.Department of Chemical and Biological EngineeringIowa State UniversityAmesUSA

Personalised recommendations