Advertisement

Use of genome editing technologies for genetic improvement of crops of tropical origin

  • Randall Rojas-Vásquez
  • Andrés Gatica-AriasEmail author
Review
  • 11 Downloads
Part of the following topical collections:
  1. Genome Editing and New Plant Breeding Techniques

Abstract

Population growth and climate change demand the constant development of new crop varieties that can produce higher yields, and better organoleptic and nutritional value under adverse biotic, and abiotic conditions. In this sense, traditional breeding and genetic transformation have been used for decades. Nevertheless, the first approach is time consuming endeavor, and is unable to keep up with increasing food demands. On the other hand, genetic transformation is often limited by consumer acceptance. Recent genome editing technologies, such as clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (CRISPR-Cas9) system allows precise, specific, and low cost edition in a targeted genome region. The wide variety of applications for this technology includes increased yields and nutritional value, stress tolerance, and herbicide resistance. Crops of tropical origin have nutritional and economic importance; therefore, this review will analyze the advances and applications of CRISPR in crops of tropical origin to obtain varieties better adapted to current environmental conditions and market requirements.

Key message

Genome editing technologies, such as CRISPR, allows precise and specific modification of genetic information for the improvement of crops of tropical origin, including rice, maize, tomato, coffee, cacao, and citrus, to produce varieties with resistance or tolerance to biotic and abiotic factors.

Keywords

Gene editing sgRNA Mutations Agrobacterium tumefaciens Particle bombardment 

Abbreviations

bp

Base-pair

CRISPR

Clustered regularly interspaced short palindromic repeats

Cas9

CRISPR associated protein 9

DBS

DNA double-strand break

DNA

Deoxyribonucleic acid

HDR

Homology directed repair

Indel

Insertion or deletion of base(s)

NHEJ

Non-homologous end joining

PAM

Protospacer adjacent motif

PCR

Polymerase chain reaction

RNA

Ribonucleic acid

RNP

Ribonucleoprotein

sgRNA

Single guide RNA

Notes

Acknowledgements

This work was financed by “Espacio de Estudios Avanzados de la Universidad de Costa Rica” (UCREA Project No. 801-B7-294). The authors would like to thank Prof. Dr. Stefan Schillberg (Fraunhofer IME, Aachen, Germany) for his helpful comments on this review.

Author contributions

R.R.-V. researched and wrote the manuscript; A.G.-A. conceived the manuscript, wrote, and edited the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest. All authors read and approved the final review.

References

  1. Abe K, Araki E, Suzuki Y et al (2018) Production of high oleic/low linoleic rice by genome editing. Plant Physiol Biochem.  https://doi.org/10.1016/j.plaphy.2018.04.033 CrossRefPubMedGoogle Scholar
  2. Abudayyeh OO, Gootenberg JS, Essletzbichler P et al (2017) RNA targeting with CRISPR-Cas13. Nature 550:280–284PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aighewi BA, Asiedu R, Maroya N, Balogun M (2015) Improved propagation methods to raise the productivity of yam (Dioscorea rotundata Poir.). Food Security 7(4):823–834CrossRefGoogle Scholar
  4. Alemayehu D (2017) Review on genetic diversity of coffee (Coffea arabica L) in Ethiopia. Int J For Hortic 3:18–27Google Scholar
  5. Ali Z, Mahas A, Mahfouz M (2018) CRISPR/Cas13 as a tool for RNA interference. Trends Plant Sci 23:374–378.  https://doi.org/10.1016/j.tplants.2018.03.003 CrossRefPubMedGoogle Scholar
  6. Aly R, Dubey N, Yahyaa M et al (2014) Gene silencing of CCD7and CCD8 in Phelipanche aegyptiaca by tobacco rattle virus system retarded the parasite development on the host. Plant Signaling & Behavior 9:e29376.  https://doi.org/10.4161/psb.29376 CrossRefGoogle Scholar
  7. Aman R, Ali Z, Butt H et al (2018) RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol 19:1PubMedPubMedCentralCrossRefGoogle Scholar
  8. Anga J (2014) The world cocoa economy: current status, challenges and prospects. In: Multi-year expert meeting on commodities and development. ICCO, LondonGoogle Scholar
  9. Anike FN, Konan K, Olivier K et al (2012) Efficient shoot organogenesis in petioles of yam (Dioscorea spp.). Plant Cell, Tissue Organ Cult 111:303–313.  https://doi.org/10.1007/s11240-012-0195-9 CrossRefGoogle Scholar
  10. Argout X, Salse J, Aury JM et al (2011) The genome of Theobroma cacao. Nat Genet 43:101–108PubMedCrossRefPubMedCentralGoogle Scholar
  11. Ashraf M, Athar HR, Harris PJC, Kwon TR (2008) Some prospective strategies for improving crop salt tolerance. Adv Agron 97:45–110CrossRefGoogle Scholar
  12. Bainsla NK, Meena HP (2016) Breeding for resistance to biotic stresses in plants. In: Yadav P, Kumar S, Jain V (eds) Recent advances in plant stress physiology. Daya Publishing House, New Delhi, p 379Google Scholar
  13. Basnet R, Hussain N, Shu Q (2019) OsDGD2β is the sole digalactosyldiacylglycerol synthase gene highly expressed in anther, and its mutation confers male sterility in rice. Rice (N Y) 12:66.  https://doi.org/10.1186/s12284-019-0320-z CrossRefGoogle Scholar
  14. Battraw M, Hall TC (1991) Stable transformation of Sorghum bicolor protoplasts with chimeric neomycin phosphotransferase II and b-glucuronidase genes. Theor Appl Genet 82:161–168PubMedCrossRefPubMedCentralGoogle Scholar
  15. Baysal C, Bortesi L, Zhu C et al (2016) CRISPR/Cas9 activity in the rice OsBEIIb gene does not induce off-target effects in the closely related paralog OsBEIIa. Mol Breed 36:108CrossRefGoogle Scholar
  16. Belhaj K, Chaparro-Garcia A, Kamoun S et al (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84CrossRefGoogle Scholar
  17. Borovsky Y, Monsonego N, Mohan V et al (2019) The zinc-finger transcription factor CcLOL1 controls chloroplast development and immature pepper fruit color in Capsicum chinense and its function is conserved in tomato. Plant J 99:41–55.  https://doi.org/10.1111/tpj.14305 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52PubMedPubMedCentralCrossRefGoogle Scholar
  19. Brazelton VA, Zarecor S, Wright DA et al (2015) A quick guide to CRISPR sgRNA design tools. GM Crops Food 6:266–276.  https://doi.org/10.1080/21645698.2015.1137690 CrossRefGoogle Scholar
  20. Breitler JC, Dechamp E, Campa C et al (2018) CRISPR/Cas9-mediated efficient targeted mutagenesis has the potential to accelerate the domestication of Coffea canephora. Plant Cell, Tissue Organ Cult.  https://doi.org/10.1007/s11240-018-1429-2 CrossRefGoogle Scholar
  21. Butt H, Piatek A, Li L et al (2019) Multiplex CRISPR mutagenesis of the serine/arginine-rich (SR) gene family in rice. Genes 10:596.  https://doi.org/10.3390/genes10080596 CrossRefPubMedCentralGoogle Scholar
  22. Cao HX, Wenqin W, Hien TTL et al (2016) The power of CRISPR-CAS9-induced genome editing to speed up plant breeding. Int J Genomics.  https://doi.org/10.1155/2016/5078796 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chandrasekaran J, Brumin M, Wolf D et al (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17:1140–1153PubMedPubMedCentralCrossRefGoogle Scholar
  24. Char SN, Neelakandan AK, Nahampun H et al (2016) An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol J.  https://doi.org/10.1111/pbi.12611 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Char SN, Wei J, Mu Q et al (2019) An Agrobacterium -delivered CRISPR/Cas9 system for targeted mutagenesis in sorghum. Plant Biotechnol J.  https://doi.org/10.1111/pbi.13229 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Chaudhary J, Alisha A, Bhatt V et al (2019) Mutation breeding in tomato: advances, applicability and challenges. Plants 8:128.  https://doi.org/10.3390/plants8050128 CrossRefPubMedCentralGoogle Scholar
  27. Chavarriaga-Aguirre P, Brand A, Medina A et al (2016) The potential of using biotechnology to improve cassava: a review. In Vitro Cell Dev Biol Plant 52:461–478PubMedPubMedCentralCrossRefGoogle Scholar
  28. Che P, Anand A, Wu E et al (2018) Developing a flexible, high-efficiency Agrobacterium-mediated sorghum transformation system with broad application. Plant Biotechnol 16:1388–1395.  https://doi.org/10.1111/pbi.12879 CrossRefGoogle Scholar
  29. Cho MA, Moon CY, Liu JR et al (2008) Agrobacterium-mediated transformation in Citrullus lanatus. Biol Plant 52:365–369.  https://doi.org/10.1007/s10535-008-0076-6 CrossRefGoogle Scholar
  30. Chylinski K, Makarova KS, Charpentier E et al (2014) Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res 42:6091–6105.  https://doi.org/10.1093/nar/gku241 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Compton M, Gray DJ (1993) Somatic embryogenesis and plant regeneration from immature cotyledons of watermelon. Plant Cell Rep 12:61–65.  https://doi.org/10.1007/bf00241935 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Cordones MN, Mohamed S et al (2017) Production of low-Cs + rice plants by inactivation of the K + transporter OsHAK1 with the CRISPR-Cas system. Plant J 92:43–56.  https://doi.org/10.1111/tpj.13632 CrossRefGoogle Scholar
  33. D’Ambrosio C, Stigliani AL, Giorio G (2018) CRISPR/Cas9 editing of carotenoid genes in tomato. Transgenic Res 27:367–378PubMedCrossRefPubMedCentralGoogle Scholar
  34. D’Hont A, Denoeud F, Aury J-M et al (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–217.  https://doi.org/10.1038/nature11241 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Dahan-Meir T, Filler-Hayut S, Melamed-Bessudo C et al (2018) Efficient in planta targeting in tomato using geminiviral replicons and the CRISPRCas9 system. Plant J 95:5–16PubMedCrossRefPubMedCentralGoogle Scholar
  36. Denoeud F, Carretero-Paulet L, Dereeper A et al (2014) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345:1181–1184PubMedCrossRefPubMedCentralGoogle Scholar
  37. Do PT, Lee H, Mookkan M et al (2016) Rapid and efficient Agrobacterium-mediated transformation of sorghum (Sorghum bicolor) employing standard binary vectors and bar gene as a selectable marker. Plant Cell Rep 35:2065.  https://doi.org/10.1007/s00299-016-2019-6 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Eckerstorfer MF, Engelhard M, Heissenberger A et al (2019) Plants developed by new genetic modification techniques—comparison of existing regulatory frameworks in the EU and Non-EU countries. Front Bioeng Biotechnol 7:26.  https://doi.org/10.3389/fbioe.2019.00026 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Emons AMC, Kieft H (1995) Somatic embryogenesis in maize (Zea mays L.). In: Balaji YPS (ed) Biotechnology in agriculture and forestry. Springer, Berlin, pp 24–39.  https://doi.org/10.1007/978-3-642-78643-3_3 CrossRefGoogle Scholar
  40. Endo M, Mikami M, Endo A et al (2018) Genome editing in plants by engineered CRISPR–Cas9 recognizing NG PAM. Nat Plants.  https://doi.org/10.1038/s41477-018-0321-8 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Eriksson D, Kershen D, Nepomuceno A et al (2019) A comparison of the EU regulatory approach to directed mutagenesis with that of other jurisdictions, consequences for international trade and potential steps forward. New Phytol 222:1673–1684PubMedCrossRefPubMedCentralGoogle Scholar
  42. FAO (2015) Citrus fruit statistics 2015. http://www.fao.org/3/a-i5558e.pdf. Accessed 29 Sept 2018
  43. FAO (2016) Climate change and food security: risks and responses. http://www.fao.org/3/a-i5188e.pdf. Accessed 29 Sept 2018
  44. FAOSTAT (2017) Food and Agriculture Organization of the United Nations. On-line and Multilingual Database. http://faostat.fao.org/. Accessed 15 Aug 2018
  45. Farooq R, Hussain K, Nazir S et al (2018) CRISPR/Cas9; A robust technology for producing genetically engineered plants. Cell Mol Biol 64:31–38.  https://doi.org/10.14715/cmb/2018.64.14.6 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Feng Z, Zhang B, Ding W et al (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232.  https://doi.org/10.1038/cr.2013.114 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Feng S, Song W, Fu R et al (2018) Application of the CRISPR/Cas9 system in Dioscorea zingiberensis. Plant Cell, Tissue Organ Cult.  https://doi.org/10.1007/s11240-018-1450-5 CrossRefGoogle Scholar
  48. Ferrão LFV, Ortiz R, Garcia AAF (2017) Genomic selection: state of the art. In: Campos H, Caligari PDS (eds) Genetic improvement of tropical crops. Springer, Cham, pp 19–57.  https://doi.org/10.1007/978-3-319-59819-2_2 CrossRefGoogle Scholar
  49. Fister AS, Landherr L, Maximova SN et al (2018) Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Front Plant Sci 9:268.  https://doi.org/10.3389/fpls.2018.00268 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Fondong VN and Rey C (2018) Recent biotechnological advances in the improvement of cassava. https://www.intechopen.com/books/cassava/recent-biotechnological-advances-in-the-improvement-of-cassava. Accessed 31 Aug 2019
  51. Gao J, Wang G, Ma S et al (2015) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87:99–110.  https://doi.org/10.1007/s11103-014-0263-0 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Girijashankar V, Sharma KK, Balakrishna P et al (2007) Direct somatic embryogenesis and organogenesis pathway of plant regeneration can seldom occur simultaneously within the same explant of sorghum. SAT eJournal 3(1):1–3Google Scholar
  53. Girijashankar V, Swathisree V (2009) Genetic transformation of Sorghum bicolor. Physiol Mol Biol Plants 15(4):287–302.  https://doi.org/10.1007/s12298-009-0033-7 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Gomez MA, Lin ZD, Moll T et al (2018) Simultaneous CRISPR/Cas9-mediated editing of cassava elF4E isoforms nCBP-1 and nCBP-2 confers elevated resistance to cassava brown streak disease. bioRxiv.  https://doi.org/10.1101/209874 CrossRefGoogle Scholar
  55. Gootenberg JS, Abudayyeh OO, Lee JW et al (2017) Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356:438–442PubMedPubMedCentralCrossRefGoogle Scholar
  56. Gotsch N (1997) Cocoa biotechnology: status, constraints and future prospects. Biotechnol Adv 15(2):333–352PubMedCrossRefPubMedCentralGoogle Scholar
  57. Govindaraj M, Vetriventhan M, Srinivasan M (2015) Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genet Res Int 2015:1–14.  https://doi.org/10.1155/2015/431487 CrossRefGoogle Scholar
  58. Grohmann L, Keilwagen J, Duensing N et al (2019) Detection and identification of genome editing in plants: challenges and opportunities. Front Plant Sci 10:236.  https://doi.org/10.3389/fpls.2019.00236 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Guo S, Zhang J, Sun H et al (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45:51–58.  https://doi.org/10.1038/ng.2470 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Guo X, Duan X, Wu Y et al (2018) Genetic engineering of maize (Zea mays L.) with improved grain nutrients. J Agric Food Chem.  https://doi.org/10.1021/acs.jafc.7b05390 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Hahn F, Nekrasov V (2018) CRISPR/Cas precision: do we need to worry about off-targeting in plants? Plant Cell Rep.  https://doi.org/10.1007/s00299-018-2355-9 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Hanson P, Yang R (2016) Genetic improvement of tomato (Solanum lycopersicum L.) for phytonutrient content at AVRDC-the World Vegetable Center. Ekin J 2:1–10Google Scholar
  63. Haque E, Taniguchi H, Hassan MM et al (2018) Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: recent progress, prospects, and challenges. Front Plant Sci.  https://doi.org/10.3389/fpls.2018.00617 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Hariprasanna K, Rakshit S (2016) Economic importance of sorghum. Sorghum Genome.  https://doi.org/10.1007/978-3-319-47789-3_1 CrossRefGoogle Scholar
  65. Hayashimoto A, Li Z, Murai N (1990) A polyethylene glycol-mediated protoplast transformation system for production of fertile transgenic rice plants. Plant Physiol 93:857–863.  https://doi.org/10.1104/pp.93.3.857 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Hema MV, Prasad T, Vani A (2004) Transient expression and stable integration of chimeric Gus gene in watermelon following electroporation. J Hortic Sci Biotechnol 79:364–369CrossRefGoogle Scholar
  67. Hershenhorn J, Eizenberg H, Dor E et al (2009) Phelipanche aegyptiacamanagement in tomato. Weed Res 49:34–47.  https://doi.org/10.1111/j.1365-3180.2009.00739.x CrossRefGoogle Scholar
  68. Hiei Y, Ohta S, Komari T et al (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282.  https://doi.org/10.1046/j.1365-313x.1994.6020271.x CrossRefPubMedPubMedCentralGoogle Scholar
  69. Higgins J (2004) Resistant starch: metabolic effects and potential health benefits. J AOAC Int 87:761–768PubMedPubMedCentralGoogle Scholar
  70. Hu C, Deng G, Sun X et al (2017a) Establishment of an efficient CRISPR/Cas9-mediated gene editing system in banana. Sci Agric Sin 50:1294–1301Google Scholar
  71. Hu B, Li D, Liu X et al (2017b) Engineering non-transgenic gynoecious cucumber using an improved transformation protocol and optimized CRISPR/Cas9 system. Mol Plant 10:1575–1578.  https://doi.org/10.1016/j.molp.2017.09.005 CrossRefPubMedGoogle Scholar
  72. Hua K, Tao X, Yuan F et al (2018) Precise A·T to G·C base editing in the rice genome. Mol Plant 11:627–630.  https://doi.org/10.1016/j.molp.2018.02.007 CrossRefPubMedGoogle Scholar
  73. Huang S, Li R, Zhang Z et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281.  https://doi.org/10.1038/ng.475 CrossRefPubMedGoogle Scholar
  74. Huang C, Sun H, Xu D et al (2018) ZmCCT9 enhances maize adaptation to higher latitudes. Proc Natl Acad Sci USA 115:334–341.  https://doi.org/10.1073/pnas.1718058115 CrossRefGoogle Scholar
  75. Hummel AW, Chauhan RD, Cermak T et al (2018) Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnol J 16:1275–1282PubMedPubMedCentralCrossRefGoogle Scholar
  76. Illouz-Eliaz N, Ramon U, Shohat H et al (2019) Multiple gibberellin receptors contribute to phenotypic stability under changing environments. Plant Cell 31:1506–1519.  https://doi.org/10.1105/tpc.19.00235 CrossRefPubMedGoogle Scholar
  77. Ishino Y, Krupovic M, Forterre P (2018) History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J Bacteriol.  https://doi.org/10.1128/jb.00580-17 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Jagodzik P, Tajdel-Zielinska M, Ciesla A et al (2018) Mitogen-activated protein kinase cascades in plant hormone signaling. Front Plant Sci.  https://doi.org/10.3389/fpls.2018.01387 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Jalmi S, Sinha A (2015) ROS mediated MAPK signaling in abiotic and biotic stress-striking similarities and differences. Front Plant Sci.  https://doi.org/10.3389/fpls.2015.00769 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Jaqueth JS, Hou Z, Zheng P et al (2019) Fertility restoration of maize CMS-C altered by a single amino acid substitution within the Rf4 bHLH transcription factor. Plant J.  https://doi.org/10.1111/tpj.14521 CrossRefPubMedGoogle Scholar
  81. Jesus M, Martins A, Gallardo E et al (2016) Diosgenin: recent highlights on pharmacology and analytical methodology. J Anal Methods Chem 016:1–16.  https://doi.org/10.1155/2016/4156293 CrossRefGoogle Scholar
  82. Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE 9:1–6Google Scholar
  83. Jia H, Orbovic V, Jones JB et al (2015) Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4:dCsLOB1.3 infection. Plant Biotechnol J 14:1291–1301.  https://doi.org/10.1111/pbi.12495 CrossRefPubMedGoogle Scholar
  84. Jia H, Zhang Y, Orbović V et al (2017) Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol J 15:817–823.  https://doi.org/10.1111/pbi.12677 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Jia H, Zou X, Orbovic V et al (2019) Genome editing in citrus tree with CRISPR/Cas9. Plant Genome Ed CRISPR Syst 1917:235–241.  https://doi.org/10.1007/978-1-4939-8991-1_17 CrossRefGoogle Scholar
  86. Jiang F, Doudna JA (2017) CRISPR–Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529PubMedCrossRefGoogle Scholar
  87. Jiang W, Zhou H, Bi H et al (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188.  https://doi.org/10.1093/nar/gkt780 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Jiang N, Zhang C, Liu JY et al (2019) Development of beet necrotic yellow vein virus-based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. Plant Biotechnol J 17:1302–1315PubMedPubMedCentralCrossRefGoogle Scholar
  89. Johnson RA, Gurevich V, Filler S et al (2015) Comparative assessments of CRISPR-Cas nucleases’ cleavage efficiency in planta. Plant Mol Biol 87:143–156PubMedCrossRefGoogle Scholar
  90. Kamburova VS, Nikitina EV, Shermatov SE et al (2017) Genome editing in plants: an overview of tools and applications. Int J Agron 2017:1–15CrossRefGoogle Scholar
  91. Kangquan Y, Caixia G, Jin-Long Q (2017) Progress and prospects in plant genome editing. Nat Plants.  https://doi.org/10.1038/nplants.2017.107 CrossRefGoogle Scholar
  92. Kaur N, Alok A, Shivani et al (2018) CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. rasthali genome. Funct Integr Genomics 18:89–99.  https://doi.org/10.1007/s10142-017-0577-5 CrossRefPubMedGoogle Scholar
  93. Khan Z, Khan SH, Mubarik MS et al (2016) Use of TALEs and TALEN technology for genetic improvement of plants. Plant Mol Biol Rep 35:1–19CrossRefGoogle Scholar
  94. Kinderlerer J (2008) The Cartagena protocol on biosafety. Collect Biosaf Rev 4:12–65Google Scholar
  95. Kohli A, Melendi PG, Abranches R et al (2006) The quest to understand the basis and mechanisms that control expression of introduced transgenes in crop plants. Plant Signal Behav 1:185–195PubMedPubMedCentralCrossRefGoogle Scholar
  96. Krug MG, Stipp LC, Rodriguez AP et al (2005) In vitro organogenesis in watermelon cotyledons. Pesqui Agropecu Bras 40:861–865.  https://doi.org/10.1590/s0100-204x2005000900004 CrossRefGoogle Scholar
  97. Kumar R, Tuteja N (2012) Development of Agrobacterium-mediated transformation technology for mature seed-derived callus tissues of indica rice cultivar IR64. GM Crops Food Biotechnol Agric Food Chain 3:123–128Google Scholar
  98. Kumar K, Gill MI, Gosal SS (2018) Somatic embryogenesis, in vitro selection and plantlet regeneration for citrus improvement. Biotechnol Crop Improv 1:373–406CrossRefGoogle Scholar
  99. Kumar V, Abu J, Marzouk S et al (2019) CRISPR/Cas9-mediated mutagenesis of CAROTENOID CLEAVAGE DIOXYGENASE 8 in tomato provides resistance against the parasitic weed Phelipanche aegyptiaca. Sci Rep 9:11438.  https://doi.org/10.1038/s41598-019-47893-z CrossRefGoogle Scholar
  100. Labouisse JP, Bellachew B, Kotecha S et al (2008) Current status of coffee (Coffea arabica L.) genetic resources in Ethiopia: implications for conservarion. Genet Resour Crop Evol 55:1079–1093.  https://doi.org/10.1007/s10722-008-9361-7 CrossRefGoogle Scholar
  101. Lassoued R, Hesseln H, Phillips PWB et al (2018a) Top plant breeding techniques for improving food security: an expert Delphi survey of the opportunities and challenges. Int J Agric Resour Gov Ecol 14:321–337Google Scholar
  102. Lassoued R, Smyth SJ, Phillips PWB et al (2018b) Regulatory uncertainty around new breeding techniques. Front Plant Sci 9:1291.  https://doi.org/10.3389/fpls.2018.01291 CrossRefPubMedPubMedCentralGoogle Scholar
  103. LeBlanc C, Zhang F, Mendez J et al (2018) Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. Plant J 93:377–386.  https://doi.org/10.1111/tpj.13782 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Lee H, Zhang ZJ (2013) Agrobacterium-mediated transformation of maize (Zea mays) immature embryos. Cereal Genomics.  https://doi.org/10.1007/978-1-62703-715-0_22 CrossRefGoogle Scholar
  105. Li L, Qu R, de Kochko A et al (1993) An improved rice transformation system using the biolistic method. Plant Cell Rep 12:250–255.  https://doi.org/10.1007/bf00237129 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Li JF, Norville JE, Aach J, McCormack M et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691.  https://doi.org/10.1038/nbt.2654 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Li R, Li R, Li X et al (2017) Multiplexed CRISPR/Cas9-mediated metabolic engineering of gamma-aminobutyric acid levels in Solanum lycopersicum. Plant Biotechnol J 16:415–427.  https://doi.org/10.1111/pbi.12781 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Li C, Zong Y, Wang Y, Jin S et al (2018a) Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol 19:59PubMedPubMedCentralCrossRefGoogle Scholar
  109. Li C, Yue Y, Chen H et al (2018b) ZmbZIP22 is a transcription factor that regulates 27-kD γ-zein gene transcription during maize endosperm development. Plant Cell 30:2402–2424PubMedPubMedCentralCrossRefGoogle Scholar
  110. Li A, Jia S, Yobi A et al (2018c) Editing of an alpha-kafirin gene family increases digestibility and protein quality in sorghum. Plant Physiol 77:1425–1438.  https://doi.org/10.1104/pp.18.00200 CrossRefGoogle Scholar
  111. Li Y, Zhu J, Wu L et al (2019a) Functional divergence of PIN1 paralogous genes in rice. Plant Cell Physiol.  https://doi.org/10.1093/pcp/pcz159 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Li R, Liu C, Zhao R et al (2019b) CRISPR/Cas9-Mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance. BMC Plant Biol.  https://doi.org/10.1186/s12870-018-1627-4 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Liang Z, Zhang K, Chen K et al (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41:63–68PubMedCrossRefPubMedCentralGoogle Scholar
  114. Liang Z, Chen K, Yan Y et al (2018) Genotyping genome-edited mutations in plants using CRISPR ribonucleoprotein complexes. Plant Biotechnol J.  https://doi.org/10.1111/pbi.12938 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Liu L, Liu C, Wang Y et al (2015) Herbal medicine for anxiety, depression and insomnia. Curr Neuropharmacol 13:481–493.  https://doi.org/10.2174/1570159x13041508311227 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Liu J, Gao P, Sun X et al (2017) Efficient regeneration and genetic transformation platform applicable to five Musa varieties. Electron J Biotechnol 25:33–38CrossRefGoogle Scholar
  117. Liu J, Nannas N, Fu F et al (2019a) Genome-scale sequence disruption following biolistic transformation in rice and maize. Plant Cell.  https://doi.org/10.1105/tpc.18.00613 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Liu G, Li J, Godwin ID (2019b) Genome editing by CRISPR/Cas9 in Sorghum through biolistic bombardment. Sorghum.  https://doi.org/10.1007/978-1-4939-9039-9_12 CrossRefGoogle Scholar
  119. Lowder L, Malzahn A, Qi Y (2016) Rapid evolution of manifold CRISPR systems for plant genome editing. Front Plant Sci 7:1683.  https://doi.org/10.3389/fpls.2016.01683 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Luo S, Li J, Stoddard TJ et al (2015) Non-transgenic plant genome editing using purified sequence-specific nucleases. Mol Plant 8:1425–1427.  https://doi.org/10.1016/j.molp.2015.05.012 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Lusser M, Parisi C, Plan D et al (2012) Deployment of new biotechnologies in plant breeding. Nat Biotechnol 30:231–239.  https://doi.org/10.1038/nbt.2142 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Lyznik L, Kamo K, Grimes H et al (1989) Stable transformation of maize: the impact of feeder cells on protoplast growth and transformation efficiency. Plant Cell Rep 8(5):292–295.  https://doi.org/10.1007/bf00274133 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Ma J, Liu T, Qiu D (2015) Optimization of Agrobacterium-mediated transformation conditions for tomato (Solanum lycopersicum L.). Plant Omics J 8:529–536Google Scholar
  124. Malzahn A, Lowder L, Qi Y (2017) Plant genome editing with TALEN and CRISPR. Cell Biosci 7:21.  https://doi.org/10.1186/s13578-017-0148-4 CrossRefPubMedPubMedCentralGoogle Scholar
  125. Mao X, Zheng Y, Xiao K et al (2018) OsPRX2 contributes to stomatal closure and improves potassium deficiency tolerance in rice. Biochem Biophys Res Commun 495:461–467.  https://doi.org/10.1016/j.bbrc.2017.11.045 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Marx V (2018) Base editing a CRISPR way. Nat Methods 15:767–770PubMedCrossRefPubMedCentralGoogle Scholar
  127. Maurya GP, Vivek P, Singh GP, Meena Kumar (2015) An economic analysis of cucumber cultivation in sultanpur district of Uttar Pradesh (India). Int J Agric Sci Res 5:23–28Google Scholar
  128. McHughen A, Smyth S (2008) US regulatory system for genetically modified [genetically modified organism (GMO), rDNA or transgenic crop cultivars. Plant Biotechnol J 6:2–12PubMedPubMedCentralGoogle Scholar
  129. Meena HP, Bainsla NK, Yadav DK (2016) Breeding for abiotic stress tolerance in crop plants. In: Yadav P, Kumar S, Jain V (eds) Recent advances in plant stress physiology. Daya Publishing House, New Delhi, pp 329–379Google Scholar
  130. Mehta D, Stürchler A, Anjanappa R et al (2019) Linking CRISPR-Cas9 interference in cassava to the evolution of editing-resistant geminiviruses. Genome Biol 20:80.  https://doi.org/10.1186/s13059-019-1678-3 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Mello-Farias PC, Chaves AL (2008) Advances in Agrobacterium-mediated plant transformation with enphasys on soybean. Sci Agric 65:95–106.  https://doi.org/10.1590/s0103-90162008000100014 CrossRefGoogle Scholar
  132. Miao J, Guo D, Zhang J et al (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23:1233–1236.  https://doi.org/10.1038/cr.2013.123 CrossRefPubMedPubMedCentralGoogle Scholar
  133. Mikami M, Toki S, Endo M (2015) Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice. Plant Mol Biol 88:561–572.  https://doi.org/10.1007/s11103-015-0342-x CrossRefPubMedPubMedCentralGoogle Scholar
  134. Mishra MK, Slater A (2012) Recent advances in the genetic transformation of coffee. Biotechnol Res Int 2012:580857.  https://doi.org/10.1155/2012/580857 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Mohammed S, Samad AA, Rahmat Z (2019) Agrobacterium-mediated transformation of rice: constraints and possible solutions. Rice Sci 26:133–146.  https://doi.org/10.1016/j.rsci.2019.04.001 CrossRefGoogle Scholar
  136. Motamayor JC, Risterucci AM, Lopez PA et al (2002) Cacao domestication I: the origin of the cacao cultivated by the Mayas. Heredity 89:380–386PubMedCrossRefGoogle Scholar
  137. Mushke R, Yarra R, Bulle M (2016) Efficient in vitro direct shoot organogenesis from seedling derived split node explants of maize (Zea mays L.). J Genet Eng Biotechnol 14:49–53.  https://doi.org/10.1016/j.jgeb.2016.03.001 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Naim F, Dugdale B, Kleidon J et al (2018) Gene editing the phytoene desaturase alleles of Cavendish banana using CRISPR/Cas9. Transgenic Res.  https://doi.org/10.1007/s11248-018-0083-0 CrossRefPubMedPubMedCentralGoogle Scholar
  139. Nandy S, Pathak B, Zhao S et al (2019) Heat-shock-inducible CRISPR/Cas9 system generates heritable mutations in rice. Plant Direct 3:e00145.  https://doi.org/10.1002/pld3.145 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Nannas NJ, Dawe RK (2015) Genetic and genomic toolbox of Zea mays. Genetics 199:655–669.  https://doi.org/10.1534/genetics.114.165183 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Navrátilová B, Skálová D, Ondřej V et al (2011) Biotechnological methods utilized in Cucumis research—a review. Hortic Sci (Prague) 38:150–158CrossRefGoogle Scholar
  142. Nawaz G, Han Y, Usman B et al (2019) Knockout of OsPRP1, a gene encoding proline-rich protein, confers enhanced cold sensitivity in rice (Oryza sativa L.) at the seedling stage. 3 Biotech 9:254.  https://doi.org/10.1007/s13205-019-1787-4 CrossRefPubMedPubMedCentralGoogle Scholar
  143. Newman PO, Krishnaraj S, Saxena PK (1996) Regeneration of tomato (Lycopersicon esculentum Mill.): somatic embryogenesis and shoot organogenesis from hypocotyl explaints induced with 6-benzyladenine. Int J Plant Sci 157:554–560.  https://doi.org/10.1086/297375 CrossRefGoogle Scholar
  144. Nhut DT, Le BV, Van Thanh KT (2000) Somatic embryogenesis and direct shoot regeneration of rice (Oryza sativa L.) using thin cell layer culture of apical meristematic tissue. J Plant Physiol 157:559–565.  https://doi.org/10.1016/s0176-1617(00)80112-1 CrossRefGoogle Scholar
  145. Nievola C, Carvalho C, Carvalho V et al (2017) Rapid responses of plants to temperature changes. Temperature 4:371–405.  https://doi.org/10.1080/23328940.2017.1377812 CrossRefGoogle Scholar
  146. Nihei N, Tanoi K, Nakanishi TM (2015) Inspections of radiocesium concentration levels in rice from Fukushima Prefecture after the Fukushima Dai-ichi Nuclear Power Plant accident. Scientific Reports 5:8653.  https://doi.org/10.1038/srep08653 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Nirwan RS, Kothari SL (2004) High frequency shoot organogenesis in Sorghum bicolor (L) Moench. J Plant Biochem Biotechnol 13:149.  https://doi.org/10.1007/BF03263212 CrossRefGoogle Scholar
  148. Odipio J, Alieai T, Ingelbrecht I et al (2017) Efficient CRISPR/Cas9 genome editing of phyteone desaturase in cassava. Front Plant Sci 8:1780.  https://doi.org/10.3389/fpls.2017.01780 CrossRefPubMedPubMedCentralGoogle Scholar
  149. Oerke EC, Dehne HW (2004) Safeguarding production—losses in major crops and the role of crop protection. Crop Prot 23:275–285CrossRefGoogle Scholar
  150. Oria MP, Hamaker BR, Axtell JD et al (2000) A highly digestible sorghum mutant cultivar exhibits a unique folded structure of endosperm protein bodies. Proc Natl Acad Sci USA 97:5065–5070.  https://doi.org/10.1073/pnas.080076297 CrossRefPubMedGoogle Scholar
  151. Pan C, Ye L, Quin L et al (2016) CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6:24765PubMedPubMedCentralCrossRefGoogle Scholar
  152. Pandolfini T (2009) Seedless fruit production by hormonal regulation of fruit set. Nutrients 1:168–177.  https://doi.org/10.3390/nu1020168 CrossRefPubMedPubMedCentralGoogle Scholar
  153. Parmar N, Singh KH, Sharma D et al (2017) Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review. 3 Biotech 7:239PubMedPubMedCentralCrossRefGoogle Scholar
  154. Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556.  https://doi.org/10.1038/nature07723 CrossRefPubMedGoogle Scholar
  155. Paul JW, Qi Y (2016) CRISPR/Cas9 for plant genome editing: accomplishments, problems and prospects. Plant Cell Rep 35:1417–1427.  https://doi.org/10.1007/s00299-016-1985-z CrossRefPubMedPubMedCentralGoogle Scholar
  156. Peng A, Chen S, Lei T et al (2017) Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J.  https://doi.org/10.1111/pbi.12733 CrossRefPubMedPubMedCentralGoogle Scholar
  157. Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123.  https://doi.org/10.3389/fpls.2016.01123 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Perera I, Seneweera S, Hirotsu N (2018) Manipulating the phytic acid content of rice grain toward improving micronutrient bioavailability. Rice 11(1):4.  https://doi.org/10.1186/s12284-018-0200-y CrossRefPubMedPubMedCentralGoogle Scholar
  159. Pérez L, Dita M, Martínez E (2014) Prevention and diagnostic of Fusarium Wilt (Panama disease) of banana caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (TR4). http://www.fao.org/fileadmin/templates/banana/documents/Docs_Resources_2015/TR4/13ManualFusarium.pdf. Accessed 1 Sept 2019
  160. Pérez L, Soto E, Farré G et al (2019) CRISPR/Cas9 mutations in the rice Waxy/GBSSI gene induce allele-specific and zygosity-dependent feedback effects on endosperm starch biosynthesis. Plant Cell Rep.  https://doi.org/10.1007/s00299-019-02388-z CrossRefPubMedPubMedCentralGoogle Scholar
  161. Petolino JF (2015) Genome editing in plants via designed zinc finger nucleases. In Vitro Cell Dev Biol Plant 51:1–8PubMedPubMedCentralCrossRefGoogle Scholar
  162. Piron F, Nicolaï M, Minoïa S et al (2010) An induced mutation in tomato eIF4E leads to immunity to two potyviruses. PLoS ONE 5(6):e11313.  https://doi.org/10.1371/journal.pone.0011313 CrossRefPubMedPubMedCentralGoogle Scholar
  163. Porteus M (2016) Genome editing: a new approach to human therapeutics. Annu Rev Pharmacol Toxicol 56:163–190PubMedCrossRefGoogle Scholar
  164. Prochnik S, Marri PR, Desany B et al (2012) The cassava genome: current progress, future directions. Trop Plant Biol 5:88–94.  https://doi.org/10.1007/s12042-011-9088-z CrossRefPubMedPubMedCentralGoogle Scholar
  165. Puchta H (2017) Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Curr Opin Plant Biol 36:1–8.  https://doi.org/10.1016/j.pbi.2016.11.011 CrossRefPubMedPubMedCentralGoogle Scholar
  166. Ray S, Lahiri S, Halder M et al (2015) An efficient method of isolation and transformation of protoplasts from tomato leaf mesophyll tissue using the binary vector pCambia 1302. Int Adv Res J Sci Eng Technol 2:146–150Google Scholar
  167. Razali R, Bougouffa S, Morton MJL et al (2018) The genome sequence of the wild tomato Solanum pimpinellifolium provides insights into salinity tolerance. Front Plant Sci 9:1402.  https://doi.org/10.3389/fpls.2018.01402 CrossRefPubMedPubMedCentralGoogle Scholar
  168. Reetu V, Maharishi T (2017) Watermelon: a valuable horticultural crop with nutritional benefits. Popular Kheti 5. www.popularkheti.com. Accessed 30 Aug 2019
  169. Ren C, Guo Y, Gathunga EK et al (2019) Recovery of the non-functional EGFP-assisted identification of mutants generated by CRISPR/Cas9. Plant Cell Rep.  https://doi.org/10.1007/s00299-019-02465-3 CrossRefPubMedGoogle Scholar
  170. Ribas A, Pereira LFP, Vieira LGE (2006) Genetic transformation of coffee. Braz J Plant Physiol 18:83–94CrossRefGoogle Scholar
  171. Ricachenevsky FK, Vasconcelos MW, Shou H, Johnson AAT, Sperotto RA (2019) Improving the nutritional content and quality of crops: promises, achievements, and future challenges. Front Plant Sci.  https://doi.org/10.3389/fpls.2019.00738 CrossRefPubMedPubMedCentralGoogle Scholar
  172. Ricroch A, Clairand P, Harwood W (2017) Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerg Top Life Sci 1:169–182.  https://doi.org/10.1042/ETLS20170085 CrossRefGoogle Scholar
  173. Rivero R, Ruiz J, Garcı́a P et al (2001) Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 160:315–321.  https://doi.org/10.1016/s0168-9452(00)00395-2 CrossRefPubMedGoogle Scholar
  174. Romero M, Gatica-Arias A (2019) CRISPR/Cas9: development and application in rice breeding. Rice Sci 26:265–281CrossRefGoogle Scholar
  175. Rosado A, Craig W (2017) Biosafety regulatory systems overseeing the use of genetically modified organisms in the Latin America and Caribbean region. AgBioForum 20:120–132Google Scholar
  176. Rout GR, Samantaray S, Premananda D (2008) Biotechnology of the banana: a review of recent progress. Plant Biol 2:512–524.  https://doi.org/10.1055/s-2000-7470 CrossRefGoogle Scholar
  177. Ruma D, Dhaliwal MS, Kaur A et al (2009) Transformation of tomato using biolistic gun for transient expression of the β-glucuronidase gene. Indian J Biotechnol 8:363–369Google Scholar
  178. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355PubMedPubMedCentralCrossRefGoogle Scholar
  179. Sasaki A, Ashikari M, Ueguchi-Tanaka M et al (2002) A mutant gibberellin-synthesis gene in rice. Nature 416:701–702.  https://doi.org/10.1038/416701a CrossRefPubMedGoogle Scholar
  180. Scheben A, Yuan Y, Edwards D (2016) Advances in genomics for adopting crops to climate change. Curr Plant Biol 6:2–10CrossRefGoogle Scholar
  181. Schindele P, Wolter F, Puchta H (2018) Transforming plant biology and breeding with CRISPR/Cas9, Cas12 and Cas13. FEBS Lett 592:1954–1967PubMedCrossRefGoogle Scholar
  182. Schubert R, Dobritzsch S, Gruber C et al (2019) Tomato MYB21 acts in ovules to mediate jasmonate-regulated fertility. Plant Cell.  https://doi.org/10.1105/tpc.18.00978 CrossRefPubMedPubMedCentralGoogle Scholar
  183. Seyran E, Craig W (2018) New breeding techniques and their possible regulation. AgBioForum 21(1):1–12Google Scholar
  184. Shan QW, Wang YP, Li J et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688PubMedCrossRefGoogle Scholar
  185. Shao X, Wu S, Dou T et al (2019) Using CRISPR/Cas9 genome editing system to create Ma GA 20ox2 gene modified semi-dwarf banana. Plant Biotechnol J.  https://doi.org/10.1111/pbi.13216 CrossRefPubMedGoogle Scholar
  186. Shi L, Fan JQ, Hu CG et al (2012) Improved production of transgenic Dioscorea zingiberensis (Dioscoreaceae) by Agrobacterium tumefaciens-mediated transformation. Genet Mol Res 11:244–253.  https://doi.org/10.4238/2012 CrossRefPubMedGoogle Scholar
  187. Shi Z, Zhang Y, Maximova SN et al (2013) TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response. BMC Plant Biol 13:204.  https://doi.org/10.1186/1471-2229-13-204 CrossRefPubMedPubMedCentralGoogle Scholar
  188. Shi J, Gao H, Wang H et al (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216.  https://doi.org/10.1111/pbi.12603 CrossRefPubMedGoogle Scholar
  189. Shu Y, Ying-Cai Y, Hong-Hui L (2005) Plant regeneration through somatic embryogenesis from callus cultures of Dioscorea zingiberensis. Plant Cell, Tissue Organ Cult 80:157–161.  https://doi.org/10.1007/s11240-004-9543-8 CrossRefGoogle Scholar
  190. Singh S, Rajam MV (2009) Citrus biotechnology: achievements, limitations and future directions. Physiol Mol Biol Plants 15:3.  https://doi.org/10.1007/s12298-009-0001-2 CrossRefPubMedPubMedCentralGoogle Scholar
  191. Smyth SJ (2019) Global status of the regulation of genome editing technologies. https://www.cabi.org/cabreviews/review/20193130669. Accessed 30 Aug 2019
  192. Sprink T, Eriksson D, Schiemann J, Hartung F (2016) Regulatory hurdles for genome editing: process- vs. product-based approaches in different regulatory contexts. Plant Cell Rep 35:1493–1506.  https://doi.org/10.1007/s00299-016-1990-2 CrossRefPubMedPubMedCentralGoogle Scholar
  193. Sun Y, Zhang X, Wu C et al (2016) Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol Plant 9:628–631CrossRefGoogle Scholar
  194. Sun Y, Jiao G, Liu Z et al (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8:298.  https://doi.org/10.3389/fpls.2017.00298 CrossRefPubMedPubMedCentralGoogle Scholar
  195. Suratman F, Huyop F, Wagiran A et al (2010) Biolistic transformation of Citrullus vulgaris Schrad (Watermelon). Biotechnology 9:119–130CrossRefGoogle Scholar
  196. Svitashev S, Young JK, Schwartz C et al (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169:931–945.  https://doi.org/10.1104/pp.15.00793 CrossRefPubMedPubMedCentralGoogle Scholar
  197. Svitashev S, Schwartz C, Lenderts B (2016) Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7:13274.  https://doi.org/10.1038/ncomms13274 CrossRefPubMedPubMedCentralGoogle Scholar
  198. Tadesse Y, Sági L, Swennen R et al (2003) Optimization of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microparticle bombardment. Plant Cell, Tissue Organ Cult 75:1.  https://doi.org/10.1023/A:1024664817800 CrossRefGoogle Scholar
  199. Tang W, Tang AY (2017) Applications and roles of the CRISPR system in genome editing of plants. J For Res 28:15–28.  https://doi.org/10.1007/s11676-016-0281-7 CrossRefGoogle Scholar
  200. Tang X, Lowder LG, Zhang T et al (2017) A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:17018PubMedCrossRefPubMedCentralGoogle Scholar
  201. Tashkandi M, Ali Z, Aljedaani F et al (2018) Engineering resistance against tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signal Behav 13:e1525996.  https://doi.org/10.1080/15592324.2018.1525996 CrossRefPubMedPubMedCentralGoogle Scholar
  202. The 100 tomato Genome Sequencing Consortium, Aflitos S, Schijlen E et al (2014) Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J 80:136–148.  https://doi.org/10.1111/tpj.12616 CrossRefGoogle Scholar
  203. Tian S, Jiang L, Gao Q et al (2017) Efficient CRISPR/Cas9-based gene knockout in watermelon. Plant Cell Rep 36:399–406.  https://doi.org/10.1007/s00299-016-2089-5 CrossRefPubMedPubMedCentralGoogle Scholar
  204. Tian S, Jiang L, Cui X et al (2018) Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing. Plant Cell Rep 37:1353–1356.  https://doi.org/10.1007/s00299-018-2299-0 CrossRefPubMedPubMedCentralGoogle Scholar
  205. Toda E, Koiso N, Takebayashi A et al (2019) An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice. Nat Plants 5:363–368PubMedCrossRefPubMedCentralGoogle Scholar
  206. Tör M, Ainsworth C, Mantell S (1993) Stable transformation of the food yam Dioscorea alata L. by particle bombardment. Plant Cell Rep 12:468–473.  https://doi.org/10.1007/bf00234714 CrossRefPubMedPubMedCentralGoogle Scholar
  207. Tör M, Twyford CT, Funes I, Boccon-Gibod J et al (1998) Isolation and culture of protoplasts from immature leaves and embryogenic cell suspensions of Dioscorea yams: tools for transient gene expression studies. Plant Cell, Tissue Organ Cult 53:113–126.  https://doi.org/10.1023/a:1006028406641 CrossRefGoogle Scholar
  208. Tran H, Lee LS, Furtado A et al (2016) Advances in genomics for the improvement of quality in coffee. J Sci Food Agric 96:3300–3312PubMedCrossRefPubMedCentralGoogle Scholar
  209. Tripathi L (2018) Prospects of genetic engineering and gene editing in yam improvement. https://pag.confex.com›xxvii›oid›Recording3992›paper37167_1. Accessed 31 Aug 2019Google Scholar
  210. Tripathi J, Ntui V, Ron M et al (2019) CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Commun Biol.  https://doi.org/10.1038/s42003-019-0288-7 CrossRefPubMedPubMedCentralGoogle Scholar
  211. Ueta R, Abe C, Watanabe T et al (2017) Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Sci Rep 7:507PubMedPubMedCentralCrossRefGoogle Scholar
  212. Vanderschuren H, Alder A, Zhang P et al (2009) Dose-dependent RNAi-mediated geminivirus resistance in the tropical root crop cassava. Plant Mol Biol 70:265–272.  https://doi.org/10.1007/s11103-009-9472-3 CrossRefPubMedPubMedCentralGoogle Scholar
  213. Wang K (2015) Agrobacterium protocols. Methods Mol Biol.  https://doi.org/10.1007/978-1-4939-1695-5 CrossRefPubMedPubMedCentralGoogle Scholar
  214. Wang M, Wang G, Ji J et al (2009) The effect of pds gene silencing on chloroplast pigment composition, thylakoid membrane structure and photosynthesis efficiency in tobacco plants. Plant Sci 177:222–226.  https://doi.org/10.1016/j.plantsci.2009.04.006 CrossRefGoogle Scholar
  215. Wang S, Seong SK, Ye X, He C, Suk YK, Pil SC (2015) Current status of genetic transformation technology developed in cucumber (Cucumis sativus L.) WANG. J Integr Agric 14:469–482CrossRefGoogle Scholar
  216. Wang F, Wang C, Liu P et al (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OSERF922. PLoS ONE 11:e0154027.  https://doi.org/10.1371/journal.pone.0154027 CrossRefPubMedPubMedCentralGoogle Scholar
  217. Wang L, Chen L, Li R et al (2017) Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. J Agric Food Chem 65:8674–8682.  https://doi.org/10.1021/acs.jafc.7b02745 CrossRefPubMedPubMedCentralGoogle Scholar
  218. Wang B, Zhu L, Zhao B, Zhao Y et al (2019a) Development of a haploid-inducer mediated genome editing (IMGE) system for accelerating maize breeding. Mol Plant.  https://doi.org/10.1016/j.molp.2019.03.006 CrossRefPubMedPubMedCentralGoogle Scholar
  219. Wang B, Xie G, Liu Z et al (2019b) Mutagenesis reveals that the OsPPa6 gene is required for enhancing the alkaline tolerance in rice. Front Plant Sci.  https://doi.org/10.3389/fpls.2019.00759 CrossRefPubMedPubMedCentralGoogle Scholar
  220. Wang X, Yang G, Shi M et al (2019c) Disruption of an amino acid transporter LHT1 leads to growth inhibition and low yields in rice. BMC Plant Biol.  https://doi.org/10.1186/s12870-019-1885-9 CrossRefPubMedPubMedCentralGoogle Scholar
  221. Wang R, Tavano EC, Lammers M et al (2019d) Re-evaluation of transcription factor function in tomato fruit development and ripening with CRISPR/Cas9-mutagenesis. Sci Rep.  https://doi.org/10.1038/s41598-018-38170-6 CrossRefPubMedPubMedCentralGoogle Scholar
  222. Wickramasuriya AM, Dunwell JM (2018) Cacao biotechnology: current status and future prospects. Plant Biotechnol J 16:4–17PubMedCrossRefPubMedCentralGoogle Scholar
  223. Wolt JD, Wang K, Sashital D et al (2016) Achieving plant CRISPR targeting that limits off-target effects. Plant Genome 9:1–8.  https://doi.org/10.3835/plantgenome2016.05.0047 CrossRefGoogle Scholar
  224. Wolter F, Puchta H (2018) The CRISPR/Cas revolution reaches the RNA world: Cas13, a new Swiss Army knife for plant biologists. Plant J 94:767–775PubMedCrossRefPubMedCentralGoogle Scholar
  225. Woo JW, Kim J, Kwon SI et al (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164.  https://doi.org/10.1038/nbt.3389 CrossRefGoogle Scholar
  226. Wright M, Dawson J, Dunder E et al (2001) Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep 20:429–436.  https://doi.org/10.1007/s002990100318 CrossRefPubMedPubMedCentralGoogle Scholar
  227. Wu G, Zhao Y, Shen R et al (2019) Characterization of maize phytochrome-interacting factors in light signaling and photomorphogenesis. Plant Physiol.  https://doi.org/10.1104/pp.19.00239 CrossRefPubMedPubMedCentralGoogle Scholar
  228. Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol Plant 6:1975–1983.  https://doi.org/10.1093/mp/ssT119 CrossRefPubMedPubMedCentralGoogle Scholar
  229. Xu Q, Chen LL, Ruan X et al (2012) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66.  https://doi.org/10.1038/ng.2472 CrossRefPubMedPubMedCentralGoogle Scholar
  230. Xu R, Li H, Qin R et al (2014) Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice.  https://doi.org/10.1186/s12284-014-0005-6 CrossRefPubMedPubMedCentralGoogle Scholar
  231. Yang Y, Tang K, Datsenka TU et al (2019) Critical function of DNA methyltransferase 1 in tomato development and regulation of the DNA methylome and transcriptome. J Integr Plant Biol.  https://doi.org/10.1111/jipb.12778 CrossRefPubMedPubMedCentralGoogle Scholar
  232. Ye Y, Li P, Xu T et al (2017) OsPT4 contributes to arsenate uptake and transport in rice. Front Plant Sci.  https://doi.org/10.3389/fpls.2017.02197 CrossRefPubMedPubMedCentralGoogle Scholar
  233. Yin X, Biswal AK, Dionora J et al (2017) CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant Cell Rep 36:745–757.  https://doi.org/10.1007/s00299-017-2118-z CrossRefPubMedPubMedCentralGoogle Scholar
  234. Yoshida KT, Fujii S, Sakata M et al (1994) Control of organogenesis and embryogenesis in rice calli. Ikushugaku Zasshi 44:355–360.  https://doi.org/10.1270/jsbbs1951.44.355 CrossRefGoogle Scholar
  235. Yu J, Wang J, Lin W et al (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38.  https://doi.org/10.1371/journal.pbio.0030038 CrossRefPubMedPubMedCentralGoogle Scholar
  236. Yu W, Wang L, Zhao R et al (2019) Knockout of SlMAPK3 enhances tolerance to heat stress involving ROS homeostasis in tomato plants. BMC Plant Biol.  https://doi.org/10.1186/s12870-019-1939-z CrossRefPubMedPubMedCentralGoogle Scholar
  237. YuChun R, Xu N, Li S et al (2019) PE-1, encoding heme oxygenase 1, impacts heading date and chloroplast development in rice (Oryza sativa. L). J Agric Food Chem.  https://doi.org/10.1021/acs.jafc.9b01676 CrossRefGoogle Scholar
  238. Zenpei S, Sachiko K, Mariko T et al (2017) Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35:441–443CrossRefGoogle Scholar
  239. Zhang Y, Liang Z, Zong Y et al (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617.  https://doi.org/10.1038/ncomms12617 CrossRefPubMedPubMedCentralGoogle Scholar
  240. Zhang H, Zhang J, Lang Z et al (2017a) Genome editing—principles and applications for functional genomics research and crop improvement. Crit Rev Plant Sci 36:291–309CrossRefGoogle Scholar
  241. Zhang F, LeBlanc C, Irish VF et al (2017b) Rapid and efficient CRISPR/Cas9 gene editing in Citrus using the YAO promoter. Plant Cell Rep 36:1883–1887.  https://doi.org/10.1007/s00299-017-2202-4 CrossRefPubMedPubMedCentralGoogle Scholar
  242. Zhang Q, Xing HL, Wang ZP et al (2018a) Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention. Plant Mol Biol 96:445–456PubMedPubMedCentralCrossRefGoogle Scholar
  243. Zhang X, Jin M, Tadesse N et al (2018b) Dioscorea zingiberensis C. H. Wright: an overview on its traditional use, phytochemistry, pharmacology, clinical applications, quality control, and toxicity. J Ethnopharmacol 220:283–293.  https://doi.org/10.1016/j.jep.2018.03.017 CrossRefPubMedPubMedCentralGoogle Scholar
  244. Zhang Z, Guo J, Zhao Y et al (2019) Identification and characterization of maize ACD6-like gene reveal ZmACD6 as the maize orthologue conferring resistance to Ustilago maydis. Plant Signal Behav.  https://doi.org/10.1080/15592324.2019.1651604 CrossRefPubMedPubMedCentralGoogle Scholar
  245. Zhong Y, Liu C, Qi X et al (2019) Mutation of ZmDMP enhances haploid induction in maize. Nat Plants 5:575–580.  https://doi.org/10.1038/s41477-019-0443-7 CrossRefPubMedPubMedCentralGoogle Scholar
  246. Zhou W, Li B, Li L et al (2018a) Genome survey sequencing of Dioscorea zingiberensis. Genome 61:567–574.  https://doi.org/10.1139/gen-2018-0011 CrossRefPubMedPubMedCentralGoogle Scholar
  247. Zhou L, Peng R, Zhang R et al (2018b) The applications of CRISPR/Cas system in molecular detection. J Cell Mol Med 22:5807–5815.  https://doi.org/10.1111/jcmm.13925 CrossRefPubMedPubMedCentralGoogle Scholar
  248. Zong Y, Wang Y, Li C et al (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 5:438–440.  https://doi.org/10.1038/nbt.3811 CrossRefGoogle Scholar
  249. Zou T, Liu M, Xiao Q et al (2018) OsPKS2 is required for rice male fertility by participating in pollen wall formation. Plant Cell Rep 37:759–773.  https://doi.org/10.1007/s00299-018-2265-x CrossRefPubMedPubMedCentralGoogle Scholar
  250. Zsögön A, Čermák T, Naves ER et al (2018) De novo domestication of wild tomato using genome editing. Nat Biotechnol.  https://doi.org/10.1038/nbt.4272 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratory of Plant Biotechnology, School of BiologyUniversity of Costa RicaSan JoséCosta Rica
  2. 2.Research Center in Cellular and Molecular Biology (CIBCM)University of Costa RicaSan JoséCosta Rica
  3. 3.Postgraduate Program in Agricultural Sciences And Natural Resources with Emphasis in Biotechnology, Faculty of Agrifood SciencesUniversity of Costa RicaSan JoséCosta Rica

Personalised recommendations