Application of transport engineering to promote catharanthine production in Catharanthus roseus hairy roots

  • Yanyan Wang
  • Bingrun Yang
  • Mengxia Zhang
  • Shanshan Jia
  • Fang YuEmail author
Original Article


Low accumulation levels of valuable plant secondary metabolites lead to high costs for these compounds production. In order to promote accumulation levels of these molecules, many efforts have been carried out during the past decades, such as elicitation, precursor feeding, tissue cultures and overexpression of pathway genes. However, these engineering strategies could only slightly increase the amounts of target metabolites, since biosynthesis pathways of these compounds are very complex and involving several different organelles and cell types. In this work, we used Catharanthus roseus hairy roots as research material to investigate the effect of transport engineering on monoterpenoid indole alkaloids (MIAs) production. Results showed that overexpresssion of catharanthine transporter, CrTPT2, in C. roseus hairy roots could dramatically increase the accumulation level of catharanthine to fivefold higher than that in control hairy roots, while other MIAs accumulation levels are not affected. Since the expression of pathway genes are at similar level, timely removal of catharanthine from where it is synthesized could be critical for promoting catharanthine production, which exemplifies the application of transport engineering to effective manipulation of plant secondary metabolites biosynthesis.

Key message

Overexpression of catharanthine transporter, CrTPT2, in Catharanthus roseus hairy roots specifically promotes catharanthine production, which exemplifies an effective manipulation strategy for plant secondary metabolites biosynthesis.


Transport engineering Catharanthus roseus Catharanthine transporter Monoterpenoid indole alkaloids Hairy roots 



This work was funded by National Natural Science Foundation of China (Grant No. 31570303).

Author contributions

WY, JS, and YF designed research; WY and YB performed research; WY, YB, ZM, JS, and YF analyzed data; and WY and YF wrote the paper.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11240_2019_1696_MOESM1_ESM.xlsx (11 kb)
Electronic supplementary material 1 (XLSX 11 kb)


  1. Bhadra R, Vani S, Shanks J (1993) Production of indole alkaloids by selected hairy root lines of Catharanthus roseus. Biotechnol Bioeng 41:581–592CrossRefGoogle Scholar
  2. Bird DA, Franceschi VR, Facchini PJ (2003) A tale of three cell types: alkaloid biosynthesis is localized to sieve elements in opium poppy. Plant Cell 15:2626–2635CrossRefGoogle Scholar
  3. Bosselut N, Ghelder CV, Claverie M, Voisin R, Onesto JP, Rosso MN, Esmenjaud D (2011) Agrobacterium rhizogenes-mediated transformation of Prunus as an alternative for gene functional analysis in hairy-roots and composite plants. Plant Cell Rep 30:1313–1326CrossRefGoogle Scholar
  4. Cai Z, Kastell A, Knorr D, Smetanska I (2012) Exudation: an expanding technique for continuous production and release of secondary metabolites from plant cell suspension and hairy root cultures. Plant Cell Rep 31:461–477CrossRefGoogle Scholar
  5. Cao W, Wang Y, Shi M, Hao X, Zhao W, Wang Y, Ren J, Kai G (2018) Transcription factor SmWRKY1 positively promotes the biosynthesis of tanshinones in Salvia miltiorrhiza. Front Plant Sci 9:554CrossRefGoogle Scholar
  6. Caputi L, Franke J, Farrow SC, Chung K, Payne RME, Nguyen TD, Dang TT, Carqueijeiro TC, Koudounas K, de Bernonville TD, Ameyaw B, Jones DM, Vieira IJC, Courdavault V, O’Connor SE (2018) Missing enzymes in the biosynthesis of the anticancer drug vinblastine in Madagascar periwinkle. Science 360:1235–1239CrossRefGoogle Scholar
  7. Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, Guo WJ, Kim JG, Underwood W, Chaudhuri B, Diane Chermak, Antony G, White FF, Somerville SC, Mudgett MB, Frommer WB (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527–532CrossRefGoogle Scholar
  8. Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207–211CrossRefGoogle Scholar
  9. De Luca V, Salim V, Thamm A, Masada SA, Yu F (2014) Making iridoids/secoiridoids and monoterpenoid indole alkaloids: progress on pathway elucidation. Curr Opin Plant Biol 19:35–42CrossRefGoogle Scholar
  10. Deng C, Hao X, Shi M, Fu R, Wang Y, Zhang Y, Zhou W, Feng Y, Makunga NP, Kai G (2019) Tanshinone production could be increased by the expression of SmWRKY2 in Salvia miltiorrhiza hairy roots. Plant Sci 284:1–8CrossRefGoogle Scholar
  11. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158CrossRefGoogle Scholar
  12. Gandhi SG (2019) Synthetic biology for production of commercially important natural product small molecules. In: Singh SP, Pandey A, Du G, Kumar S (eds) Current developments in biotechnology and bioengineering. Elsevier, Boston, pp 189–205CrossRefGoogle Scholar
  13. Goossens A, Häkkinen ST, Laakso I, Oksman-Caldentey KM, Inzé D (2003) Secretion of secondary metabolites by ATP-binding cassette transporters in plant cell suspension cultures. Plant Physiol 131:1161–1164CrossRefGoogle Scholar
  14. Hao X, Shi M, Cui L, Xu C, Zhang Y, Kai G (2015) Effects of methyl jasmonate and salicylic acid on tanshinone production and biosynthetic gene expression in transgenic Salvia miltiorrhiza hairy roots. Biotechnol Appl Biochem 62:24–31CrossRefGoogle Scholar
  15. Huang Q, Sun M, Yuan T, Wang Y, Shi M, Lu S, Tang B, Pan J, Wang Y, Kai G (2019) The AP2/ERF transcription factor SmERF1L1 regulates the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza. Food Chem 274:368–375CrossRefGoogle Scholar
  16. Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004) Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metab Eng 6:268–276CrossRefGoogle Scholar
  17. Isah T, Umar S, Mujib A, Sharma MP, Rajasekharan PE, Zafar N, Frukh A (2018) Secondary metabolism of pharmaceuticals in the plant in vitro cultures: strategies, approaches, and limitations to achieving higher yield. Plant Cell Tiss Org 132:239–265CrossRefGoogle Scholar
  18. Larsen B, Fuller VL, Pollier J, Van Moerkercke A, Schweizer F, Payne R, Colinas M, O’Connor SE, Goossens A, Halkier BA (2017) Identification of iridoid glucoside transporters in Catharanthus roseus. Plant Cell Physiol 58:1507–1518CrossRefGoogle Scholar
  19. Lv H, Li J, Wu Y, Garyali S, Wang Y (2016) Transporter and its engineering for secondary metabolites. Appl Microbiol Biotechnol 100:6119–6130CrossRefGoogle Scholar
  20. Magnotta M, Murata J, Chen J, De Luca V (2007) Expression of deacetylvindoline-4-O-acetyltransferase in Catharanthus roseus hairy roots. Phytochemistry 68:1922–1931CrossRefGoogle Scholar
  21. Nour-Eldin HH, Halkier BA (2013) The emerging field of transport engineering of plant specialized metabolites. Curr Opin Biotechnol 24:263–270CrossRefGoogle Scholar
  22. Ochoa-Villarreal M, Howat S, Hong S, Jang MO, Jin YW, Lee EK, Loake GJ (2016) Plant cell culture strategies for the production of natural products. BMB Rep 49:149–158CrossRefGoogle Scholar
  23. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532CrossRefGoogle Scholar
  24. Pan Q, Mustafa NR, Tang K, Choi YH, Verpoorte R (2016) Monoterpenoid indole alkaloids biosynthesis and its regulation in Catharanthus roseus: a literature review from genes to metabolites. Phytochem Rev 15:221–250CrossRefGoogle Scholar
  25. Payne RM, Xu D, Foureau E, Teto Carqueijeiro MI, Oudin A, Bernonville TD, Novak V, Burow M, Olsen CE, Jones DM, Tatsis EC, Pendle A, Halkier BA, Geu-Flores F, Courdavault V, Nour-Eldin HH, O’Connor SE (2017) An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole. Nat Plants 3:16208CrossRefGoogle Scholar
  26. Peebles CAM, Sander GW, Hughes EH, Peacock R, Shanks JV, San KY (2011) The expressionof1-deoxy-D-xylulosesynthaseandgeraniol-10-hydroxylase or anthranilate synthase increases terpenoid indole alkaloid accumulation in Catharanthus roseus hairy roots. Metab Eng 13:234–240CrossRefGoogle Scholar
  27. Qu Y, Easson ML, Froese J, Simionescu R, Hudlicky T, De Luca V (2015) Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast. Proc Natl Acad Sci USA 112:6224–6229CrossRefGoogle Scholar
  28. Qu Y, Easson ME, Simionescu R, Hajicek J, Thamm AMK, Salim V, De Luca V (2018) Solution of the multistep pathway for assembly of corynanthean, strychnos, iboga, and aspidosperma monoterpenoid indole alkaloids from 19E-geissoschizine. Proc Natl Acad Sci USA 115:3180–3185CrossRefGoogle Scholar
  29. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943CrossRefGoogle Scholar
  30. Saiman MZ, Miettinen K, Mustafa NR, Choi YH, Verpoorte R (2018) Metabolic alteration of Catharanthus roseus cell suspension cultures overexpressing geraniol synthase in the plastids or cytosol. Plant Cell Tiss Org 134:41–53CrossRefGoogle Scholar
  31. Samanani N, Park S-U, Facchini PJ (2005) Cell type–specific localization of transcripts encoding nine consecutive enzymes involved in protoberberine alkaloid biosynthesis. Plant Cell 17:915–926CrossRefGoogle Scholar
  32. Shen Q, Zhang L, Liao Z, Wang S, Yan T, Shi P, Liu M, Fu X, Pan Q, Wang Y, Lv Z, Lu X, Zhang F, Jiang W, Ma Y, Chen M, Hao X, Li L, Tang Y, Lv G, Zhou Y, Sun X, Brodelius PE, Rose JKC, Tang K (2018) The genome of artemisia annua provides insight into the evolution of asteraceae family and artemisinin biosynthesis. Mol Plant 11:776–788CrossRefGoogle Scholar
  33. Shi M, Huang F, Deng C, Wang Y, Kai G (2019) Bioactivities, biosynthesis and biotechnological production of phenolic acids in Salvia miltiorrhiza. Crit Rev Food Sci 59:953–964CrossRefGoogle Scholar
  34. Stavrinides A, Tatsis EC, Foureau E, Caputi L, Kellner F, Courdavault V, O’Connor SE (2015) Unlocking the diversity of alkaloids in Catharanthus roseus: nuclear localization suggests metabolic channeling in secondary metabolism. Chem Biol 22:336–341CrossRefGoogle Scholar
  35. St-Pierre B, Vazquez-Flota FA, De Luca V (1999) Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell 11:887–900CrossRefGoogle Scholar
  36. Sun J, Peebles CAM (2015) Engineering overexpression of ORCA3 and strictosidine glucosidase in Catharanthus roseus hairy roots increases alkaloid production. Protoplasma 253:1255–1264CrossRefGoogle Scholar
  37. Sun J, Zhao L, Shao Z, Shanks J, Peebles CAM (2018a) Expression of tabersonine 16-hydroxylase and 16-hydroxytabersonine-O-methyltransferase in Catharanthus roseus hairy roots. Biotechnol Bioeng 115:673–683CrossRefGoogle Scholar
  38. Sun M, Shi M, Wang Y, Huang Q, Yuan T, Wang Q, Wang C, Zhou W, Kai G (2018b) The biosynthesis of phenolic acids is positively regulated by the JA-responsive transcription factor ERF115 in Salvia miltiorrhiza. J Exp Bot 70:243–254CrossRefGoogle Scholar
  39. Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q (2018) Response of plant secondary metabolites to environmental factors. Molecules 23:762CrossRefGoogle Scholar
  40. Yu F, De Luca V (2013) ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus. Proc Natl Acad Sci USA 110:15830–15835CrossRefGoogle Scholar
  41. Yu F, De Luca V (2014) Transport of monoterpenoid indole alkaloids in Catharanthus roseus. In: Geisler M (ed) Plant ABC Transporters. Springer, Cham, pp 63–75CrossRefGoogle Scholar
  42. Zhou ML, Zhu XM, Shao JR, Tang YX, Wu YM (2011) Production and metabolic engineering of bioactive substrates in plant hairy root culture. Appl Microbiol Biotechnol 90:1229–1239CrossRefGoogle Scholar
  43. Zhou W, Huang F, Li S, Wang Y, Zhou C, Shi M, Wang J, Chen Y, Wang Y, Wang H, Kai G (2016) Molecular cloning and characterization of two 1-deoxy-d-xylulose-5-phosphate synthase genes involved in tanshinone biosynthesis in Salvia miltiorrhiza. Mol Breed 36:124CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Yanyan Wang
    • 1
  • Bingrun Yang
    • 1
  • Mengxia Zhang
    • 1
  • Shanshan Jia
    • 1
  • Fang Yu
    • 1
    Email author
  1. 1.School of Biological EngineeringDalian Polytechnic UniversityDalianPeople’s Republic of China

Personalised recommendations